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Abstract. The detection of a Hopf bifurcation in a large scale dynamical system that depends
on a physical parameter often consists of computing the right-most eigenvalues of a sequence of large
sparse eigenvalue problems. Guckenheimer et. al. (SINUM, 34, (1997) pp. 1-21) proposed a method
that computes a value of the parameter that corresponds to a Hopf point without actually computing
right-most eigenvalues. This method utilises a certain sum of Kronecker products and involves the
solution of matrices of squared dimension, which is impractical for large scale applications. However,
if good starting guesses are available for the parameter and the purely imaginary eigenvalue at the
Hopf point, then efficient algorithms are available. In this paper, we propose a method for obtain-
ing such good starting guesses, based on finding purely imaginary eigenvalues of a two-parameter
eigenvalue problem (possibly arising after a linearisation process). The problem is formulated as an
inexact inverse iteration method that requires the solution of a sequence of Lyapunov equations with
low rank right hand sides. It is this last fact that makes the method feasible for large systems. The
power of our method is tested on four numerical examples.

1. Introduction. This paper introduces a numerical procedure for the determi-
nation of the smallest |λ| for which the large, sparse eigenvalue problem

(A + λB)x = µMx,(1.1)

has a pair of purely imaginary µ’s. Here λ is a physical parameter and µ is the
eigenvalue of the generalised eigenvalue problem (1.1).

Our work is motivated by the bifurcation analysis of the non-linear dynamical
system

du

dt
= f(u, λ) , u(0) = u0,

where f is an operator in (Rn,R) 7→ Rn with n large. Such analysis includes the
computation of bifurcation diagrams, and more particularly, the stability analysis and
detection of Hopf bifurcations, which lead to the birth of periodic solutions (see, for
example, [46]). In many situations, for example, in nonlinear finite element discretiza-
tions, we have a dynamical system of the form

M
du

dt
= f(u, λ),

where M is a large sparse symmetric positive definite mass matrix. In the case of
steady state solutions, i.e. du/dt = 0, often the values of λ are sought for which the
solution u loses stability. In a linearized stability analysis, the steady state is said to
be stable when the eigenvalues µ of

J(λ)x = µMx,(1.2)

have strictly negative real parts, with J(λ) denoting the Jacobian matrix evaluated at
the steady state u(λ), namely, J(λ) = ∂f

∂u (u(λ), λ). Values of λ where eigenvalues of
(1.2) cross the imaginary axis indicate a transition from a stable to unstable regime.
When stability is lost due to a real eigenvalue µ passing through zero there are many
techniques available to determine the critical value of λ, see, for example [15]. In
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contrast, at a Hopf bifurcation on a path of stable steady states, (1.2) has two purely
imaginary eigenvalues and their detection is a particularly difficult task for large
scale dynamical systems. On the other hand, if close starting values for λ and µ are
known then there are good methods, usually based on Newton’s Method, for their
accurate determination, see, for example, [15]. The contribution of this paper is the
determination of good starting values with which to initiate the Hopf calculation.

Perhaps the most straightforward method to detect Hopf points is to monitor the
right-most eigenvalues of (1.2) for a discrete set of λ’s. This requires the solution of
an eigenvalue problem for each selected λ, which can be very expensive, especially
when the system size is large. The solution of large scale eigenvalue problems in this
context has been studied intensively the last fifteen years. We refer to [3] for an
overview of eigenvalue solvers, and [34] for an overview on methods for computing
right-most eigenvalues. The next most obvious method is the shift-and-invert Arnoldi
method [40] [45] with zero shift. This is an attractive approach since a matrix factor-
ization of J(λ) may well be available from the steady state computation. If a matrix
factorization is not feasible, the JDQZ method [10], inexact rational Krylov [31] or
Arnoldi’s method with inexact shift-and-invert can be used. All these methods are
quite reliable for computing eigenvalues near a known point or target, but sometimes
fail to compute the right-most eigenvalue. This is likely to be the case when there
are many eigenvalues lying near zero but the eigenvalues that cross the imaginary
axis have large unknown imaginary part. This is precisely the case in the stability of
double-diffusive convection, see Chapter 8 of [50] for the theory and [6] for a numeri-
cal discussion. Reference [9] warns for wrong stability assignments being made using
standard eigenvalue tracking methods. If necessary, an expensive validation phase can
be employed to ensure that the right-most eigenvalue is indeed computed [35] [33].

For small scale problems Guckenheimer and co-workers, [19], [20], introduced a
novel technique to detect Hopf bifurcations based on the use of the bialternate product
of J(λ), defined as (J(λ) ⊗ I + I ⊗ J(λ))/2, which is an n2 × n2 matrix that has a
pair of zero eigenvalues when J(λ) has a pair of purely imaginary eigenvalues. This
approach was also used in [30], and [16], and expounded further in [15, §§4.4–4.5].
This construction forms the first theoretical step in our method, but we emphasise
that we do not compute with the Kronecker product forms. Related ideas are used by
[18] to estimate the distance to uncontrollability. There the task of determining when
two 2n × 2n matrix pencils have a common purely imaginary eigenvalue is converted
to that of finding a real eigenvalue of a 2n2 × 2n2 matrix. This is accomplished
using inverse iteration, where each matrix solve is carried out by solving a Sylvester
equation. In [18] the applications are low dimensional and the Sylvester equations
are solved using a variant of the Bartels-Stewart algorithm. Similar ideas have been
discussed for the computation of the critical delay of delay differential equations,
however, without exploiting the low rank structure of the eigenvectors [29] [36], which
makes this work infeasible for large scale problems.

In this paper we build on the idea in [19], [20], and develop a method applicable
to large scale problems. As in [18] we use an inverse iteration approach to solve the
resulting Lyapunov equations, but we extend this idea in several aspects. In particular
we present a detailed analysis of

1. an equivalence theory of three eigenvalue problems, and
2. the identification of structure of the eigenvectors.

Also, we discuss in detail the following computational issues:

1. the use of large sparse Lyapunov solvers in an inexact inverse iteration setting,
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and
2. the exploitation of low rank and symmetry properties arising from the struc-

ture of the eigenvectors.
We consider the situation where J(λ) has the form

J(λ) = (A + λB) .

In the bifurcation setting, A and B ∈ Rn×n arise from a linearization of f(u, λ) as
follows: Assume that u(0) is a known steady state at λ = 0, then J(0) is known and
J(λ) ≈ J(0) + λJ ′(0), which we write as A + λB. Here, A and B are usually large,
sparse, nonsymmetric matrices and B can be singular. In this paper, we assume
the following situation: λ = 0 corresponds to a stable steady state solution, i.e.
all eigenvalues of Ax = µMx lie in the stable half plane. The goal is to compute
the smallest |λ| for which the eigenvalue problem (1.1) has purely imaginary µ’s.
Generically, the µ’s will be continuous functions of λ and the first λ for which there
are µ’s on the imaginary axis (including the case when µ = 0), will approximate the
value of λ that corresponds to a transition from a stable to unstable steady state or to a
Hopf point. A validation phase as in [33] [35] would no longer be required in this case.
In this paper, we assume that A can be factorized by a sparse direct method or an
accurate and fast iterative solver is available. The assumption of efficient factorization
by a sparse direct method holds for a large class of large scale applications.

First, note that the bialternate product of (A + λB) has the form (dropping the
factor of 1

2
)

(A + λB) ⊗ M + M ⊗ (A + λB).(1.3)

If (1.1) has purely imaginary eigenvalues then (1.3) has a double eigenvalue zero.
Mathematically, this translates into the following n2 × n2 linear eigenvalue problem

(A ⊗ M + M ⊗ A)z + λ(B ⊗ M + M ⊗ B)z = 0 ,(1.4)

whose solution gives the values of λ for which (1.1) has purely imaginary eigenvalues
µ. Although this is a nice mathematical property, it should only be used in this form
for problems of small size, as in [19]. To produce a method that is applicable to large
scale problems we exploit the well-known equivalence between equations involving the
Kronecker product and Lyapunov equations. This shows that the eigenvalue problem
(1.4) is equivalent to the eigenvalue problem

MZAT + AZMT + λ(MZBT + BZMT ) = 0 ,(1.5)

where vec(Z) = z, with z as in (1.4). Here Z is an unknown n × n matrix, which we
also call an ‘eigenvector’ of (1.5). A new element in this paper is our discussion of the
rank of Z and its symmetry properties. A clear understanding of these two aspects
turns out to be key in obtaining an efficient algorithm for large scale problems.

For the sake of completeness, we mention the connection with the two-parameter
eigenvalue problem as discussed in [2], where the link with Kronecker (tensor) product
formulations is made. The problem that we discuss in this paper can also be written
in the form

Ax + λBx − µMx = 0(1.6)

Ax̄ + λBx̄ + µMx̄ = 0(1.7)
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where the second equation is the complex conjugate of the first and we have assumed
that µ is purely imaginary. Following Atkinson, [2], the pair (1.6), (1.7) is said to be
nonsingular if the matrix

∆0 := B ⊗ M + M ⊗ B(1.8)

is nonsingular. Atkinson also shows that systems like (1.6), (1.7) induce a natural

symmetry on Cn2

, a feature that we shall return to in §2. Such problems can be solved
with the Jacobi-Davidson method [24] [25], which seeks (λ, µ) pairs near a target
point (σ, τ), often with τ = 0, since a good starting guess for µ typically won’t be
known. However, for the detection of a Hopf bifurcation this is a potentially dangerous
strategy and a situation that we want to avoid. This paper shows an alternative
approach, where a starting guess for µ isn’t required, but where the computation of
µ is a byproduct of the method.

The plan of the paper is as follows. We first show properties of the eigenvalue
problem (1.4) in §2. We show connections between (1.1) and (1.4) and prove that
the λ of interest is a simple eigenvalue of (1.4) restricted to an appropriate subspace.
In §3, we present an inverse iteration method for solving (1.4). Inverse iteration is
an obvious choice, since we want to compute the λ nearest zero. A starting guess of
µ is not required, but the final value of µ can be computed as a byproduct once λ
and an eigenvector are known. Equation (1.4) is written as a Lyapunov-like equation,
where the eigenvectors are matrices of low rank. The fact that we work with low rank
matrices utilizes the efficiency of traditional solvers for large scale Lyapunov equations
with low rank right-hand sides. We chose a Lyapunov solver using Arnoldi’s method
in our numerical tests. This method can be viewed as an inexact inverse iteration
method and we can use convergence results for simple eigenvalues in the case that
the solution λ corresponds to a Hopf bifurcation. Numerical examples are given in §4
and support the theory in this paper.

2. Three eigenvalue problems. In this section, we discuss the properties of
the n2×n2 generalised eigenvalue problem (1.4) and describe the relationship between
its solutions and the solutions of (1.1). This relationship also holds between (1.1) and
(1.5) because of the equivalence between (1.5) and (1.4). In the next section we use the
results derived here to derive an efficient inverse iteration-type algorithm to compute
the required solution of (1.5).

It is convenient to introduce the n2 × n2 matrices:

∆0 = B ⊗ M + M ⊗ B

∆1 = A ⊗ M + M ⊗ A

and rewrite (1.4) in simpler form as

(∆1 + λ∆0)z = 0 .(2.1)

The following theorem relates the solutions of (2.1) and (1.5) with those of (1.1).
Theorem 2.1. For a given real λ, let (µj , xj) be an eigenpair of (1.1). Then
1. if µ1 = 0 is a simple eigenvalue and there are no other eigenvalues on the

imaginary axis, then λ is a simple eigenvalue of (2.1) with eigenvector z =
x1 ⊗ x1;

2. if µ1,2 = ±βi ∈ I are two simple purely imaginary eigenvalues and there are
no other eigenvalues on the imaginary axis, then λ is a double eigenvalue with
eigenvector z = ξ1x1 ⊗ x̄1 + ξ2x̄1 ⊗ x1 for any ξ1, ξ2 ∈ C;
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3. if µ1,2 = ±α ∈ R are two simple real eigenvalues and there are no other eigen-
values on the imaginary axis, then λ is a double eigenvalue with eigenvector
z = ξ1x1 ⊗ x2 + ξ2x2 ⊗ x1 for any ξ1, ξ2 ∈ C.

Proof. If µ1 = 0, then substituting z = x1 ⊗ x1 into (2.1) gives

(∆1 + λ∆0)x1 ⊗ x1 = (A + λB)x1 ⊗ Mx1 + Mx1 ⊗ (A + λB)x1 = 0 ,

which proves item 1. Items 2 and 3 follow from that (A + λB)x1 = µMx1 and
(A + λB)x2 = −µMx2, where µ = µ1 = −µ2. We can write

(∆1 + λ∆0)x1 ⊗ x2 = (A + λB)x1 ⊗ Mx2 + Mx1 ⊗ (A + λB)x2

= (A + λB + µM)x1 ⊗ Mx2 + Mx1 ⊗ (A + λB − µM)x2

= 0 ⊗ Mx2 + Mx1 ⊗ 0 = 0 .

We now show that the converse of this theorem holds if M is nonsingular.
Theorem 2.2. Let (λ, z) with λ real be an eigenpair of (2.1) and M be non-

singular. Then there are corresponding solutions of (1.1) as follows:
1. If λ is simple, then z = ξx1 ⊗ x1 where (µ1 = 0, x1) is an eigenpair of (1.1),

and ξ ∈ C.
2. If λ is a double eigenvalue, then there are µ ∈ C and x1 and x2 ∈ Cn so

that (µ, x1) and (−µ, x2) are simple eigenpairs of (1.1) and there are ξ1 and
ξ2 ∈ C so that z = ξ1x1 ⊗ x2 + ξ2x2 ⊗ x1.

Proof. Let A+λB = MXΓX−1 be a Jordan canonical form associated with (1.1),
where X = [x1, . . . , xn] and µ1, . . . , µn are the main diagonal elements of Γ, then (2.1)
is equivalent to

(MX ⊗ MX)(Γ ⊗ I + I ⊗ Γ)(X−1 ⊗ X−1)z = 0 .

Since MX ⊗ MX and X−1 ⊗ X−1 have full rank,

Γ ⊗ I + I ⊗ Γ

has at least one zero main diagonal element. The main diagonal elements of Γ⊗I+I⊗Γ
are µj + µi where µj are eigenvalues of (1.1). Since Γ⊗ I + I ⊗Γ is upper triangular,
µj +µi are eigenvalues of (A+λB)⊗M +M ⊗ (A+λB) with associated eigenvectors
z = xi ⊗ xj and z = xj ⊗ xi.

If λ is a double eigenvalue, the two eigenvalues correspond to µ1 + µ2 = 0 and
µ2 + µ1 = 0. Since A, B and M are real, we must have that µ1,2 = ±α or µ1,2 = ±βi
(possibly zero). The eigenvectors of the double eigenvalue zero must have the form
ξ1x1 ⊗ x2 + ξ2x2 ⊗ x1. If µ1,2 = ±βi, then x2 = x̄1.

If λ is a simple eigenvalue, µi + µj can only be simple and zero when i = j = 1,
and µ1 = 0. The associated eigenvector is z = ξx ⊗ x where x is the corresponding
eigenvector of (1.1).

This proves the theorem.
Theorems 2.1 and 2.2 show the correspondence between purely imaginary eigen-

pairs of (1.1) and solutions of (2.1) (equivalently (1.5)). The next theorem provides
the key to our understanding of the structure of Z, the eigenvector of (1.5).

Theorem 2.3. Assume that λ is a real eigenvalue of (2.1), and the conditions
of Theorem 2.1 are satisfied. Then the solutions of (1.5) satisfy the following results:
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1. if µ = 0 is simple, Z is a symmetric matrix of rank 1, i.e. Z = xxT , which
is unique up to a scalar factor;

2. if µ = ±βi, there is a real symmetric eigenvector of rank two, namely, Z =
xx∗ + x̄xT , which is unique up to a scalar factor and is semi-definite, and a
unique skew-symmetric eigenvector of rank two, namely, Z = xx∗ − x̄xT .

3. if µ = ±α is real, there is a symmetric eigenvector of rank two Z = x1x
T
2 +

x2x
T
1 , which is unique up to a scalar factor and is indefinite, and a unique

skew-symmetric eigenvector of rank two, namely, Z = x1x
T
2 − x2x

T
1 .

Proof. The proof for µ = 0 follows from z = x⊗ x and so Z = xxT . For µ real or
purely imaginary, we know that the eigenvectors take the form

Z = ξ1x1x
T
2 + ξ2x2x

T
1 ,

where x1 and x2 are not parallel. If ξ1 or ξ2 is zero, Z has rank one. We now prove
that for cases 2 and 3, a symmetric Z has rank two. From Z − ZT = 0 we derive
(ξ1 − ξ2)x1x

T
2 + (ξ2 − ξ1)x2x

T
1 = 0 so that ξ1 = ξ2. This implies that for a symmetric

Z, we always have a rank two matrix. Note that for case 2, x1 = x and x2 = x̄.
We can rewrite

Z = x1x
T
2 + x2x

T
1(2.2)

= (x1 + x2)(x1 + x2)
T − (x1 − x2)(x1 − x2)

T ,(2.3)

If x1 and x2 are real, Z has one positive semi-definite term and one negative semi-
definite term, so Z has one positive and one negative eigenvalue (and n − 2 zero
eigenvalues). If x2 = x̄1, then Z = xx∗ + x̄xT is the sum of two complex Hermitian
but positive semi-definite terms, which concludes the proof of the theorem.

The observation of Theorem 2.3 is very significant for our work. From the theorem
we may conclude that for the three cases considered in Theorems 2.1, 2.2 and 2.3, λ is a
simple eigenvalue when (2.1) is restricted to the subspace of symmetric eigenvectors Z.
This observation is important, since theory for eigenvalue solvers is significantly easier
for simple than for double eigenvalues. The above straightforward observations about
symmetry provide an example of the more general symmetry induced by decomposable
tensors discussed in §5.9 of [2].

The solution of (2.1) restricted to the symmetric eigenvector space is related
to, but distinct from, the method discussed in [20] and [15, §§4.4–4.5], where it is
suggested to solve (2.1) restricted to the anti-symmetric eigenvector space. For this
approach the advantage is that a simple zero µ cannot produce an eigenvalue λ in
this space, since its corresponding eigenvector, Z, is always symmetric (Theorem 2.3,
case 1). Hence, solving (2.1) restricted to the anti-symmetric eigenvector space avoids
the computation of a simple zero µ. In contrast, we have chosen the restriction
to symmetric eigenvectors, since the inverse iteration method is then related to the
symmetric solution of a Lyapunov equation, which is a rather well-known problem.

A natural representation of a low rank symmetric matrix is its truncated eigen-
decomposition. In practice, we will write Z as Z = V DV T where D is a diagonal
matrix and V T V = I. For a rank two Z, D is a 2 × 2 matrix and V is n × 2.

Once Z and λ are computed, the computation of µ readily follows from the
solution of the 2-dimensional generalised eigenvalue problem

V T (A + λB)V y = µV T MV y .(2.4)

Indeed, since

Z = xx∗ + x̄xT = V DV T ,
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x and x̄ lie in the column space of V .

When ∆0, defined by (1.8), is singular, λ = ∞ is an eigenvalue with the nullspace
of ∆0 as eigenspace. Note that in case of a singular B, µ can take any finite value
where the eigenvectors lie in the common nullspace. Here is a simple example.

Example 1. Let

A =




2 −1
1 2

3


 B =




1 0 0
0 1 0
0 0 0


 M = I .

The eigenvalues of the pencil ∆0 + λ∆1 are −2 (double eigenvalue), −2 ± i (simple
eigenvalues), −5 ± i (double eigenvalues), and ∞. For λ = −2, we have µ = ±i
(which indicates a Hopf point), For the simple eigenvalues λ = −2± i, we have µ = 0.
Complex λ have no physical meaning and are discarded. With the infinite λ, we can
associate any finite µ with eigenvector e3 ⊗ e3.

Eigenvectors associated with λ = −2 are (1,−i, 0)⊗(1, i, 0) and (1, i, 0)⊗(1,−i, 0).

3. Inverse iteration algorithm. In this section, we describe the inverse iter-
ation method [14, §7.6.1] [39, §4.2.2] to find the solution of (1.4). We rewrite the
method for solving (1.5), since we intend to work with small rank matrices. We intro-
duce an additional projection step to force the eigenvector iterates to have rank r = 1
or 2. At the end of the section, we discuss the block Arnoldi method that we use for
the numerical examples and make a note on the accuracy required by the Lyapunov
solver.

3.1. Inverse iteration. A simple inverse iteration algorithm for (2.1) is as fol-
lows:

Algorithm 3.1 (Inverse iteration for (2.1)).

1. Given z1 ∈ Rn2

with ‖z1‖2 = 1.
2. For j = 1, 2, . . .

2.1. Compute the eigenvalue approximation

λj = −zT
j ∆1zj/zT

j ∆0zj .

2.2. If λj is accurate enough, then stop.
2.3. Solve ∆1yj = ∆0zj for yj .
2.4. Normalize: zj+1 = yj/‖yj‖2.

The stopping criterion in Step 2.2 usually consists of checking if the residual norm
‖∆1zj + λj∆0zj‖2 is below a prescribed tolerance.

This algorithm is impractical since it works with vectors of dimension n2. We
therefore rewrite the algorithm for the Lyapunov form of the eigenvalue problem given
by (1.5):

Algorithm 3.2 (Inverse iteration for (1.5)).
1. Given Z1 = V1D1V

T
1 with V1 ∈ Rn×1, ‖V1‖2 = 1, and ‖D1‖F = 1.

2. For j = 1, 2, . . .
2.1. Compute the eigenvalue approximation

λj = −
trace(ÃjDjM̃

T
j + M̃jDjÃ

T
j )

trace(B̃jDjM̃T
j + M̃jDjB̃T

j )
(3.1)
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with

Ãj = V T
j AVj , B̃j = V T

j BVj , M̃j = V T
j MVj .(3.2)

2.2. If λj is accurate enough, then stop.
2.3. Solve

AYjM
T + MYjA

T = Fj(3.3)

Fj = BZjM
T + MZjB

T

in factored form: Yj = Vj+1D̃jV
T
j+1 with ‖Vj+1‖2 = 1.

2.4. Normalize: Dj+1 = D̃j/‖D̃j‖F . (Note that Zj+1 = Vj+1Dj+1V
T
j+1.)

The Rayleigh quotient (3.1) can be derived by multiplying (1.5) on the left by V T
j

and the right by Vj and plugging in Z = VjDjV
T
j .

If Fj in (3.3) is symmetric, Yj is also symmetric. Indeed, Y T
j is a solution of

(3.3) and since the eigenvalues of M−1A all lie in the left half plane, the solution is
unique. So, Yj = Y T

j . If Zj is symmetric, then Fj is symmetric. By an induction
argument on j, starting from symmetric Z1, we can see that Zj is symmetric for j ≥ 1.
Consequently, all iterates {Zj}j≥1 are symmetric, and if the sequence converges, its
limit is a symmetric eigenvector, as desired.

Direct methods for Lyapunov equations compute a full (rank) Yj from (3.3)
[4][13][23]. Such methods are too expensive for large scale problems, since they store
the full matrix and have too high complexity. Methods for large scale problems ap-
proximate the solution by a rank r ≪ n matrix Yj in factored form, Yj = Vj+1D̃jV

T
j+1.

Such methods can only be applied when a good low rank approximation exists. Fortu-
nately, in many cases, the eigenvalues of the solution of Lyapunov equations with low
rank right-hand sides arising from dynamical systems decay quickly [42][1]. Krylov
type methods [44][27][28][47][43][48] typically build a large subspace that is then re-
duced to a small rank Lyapunov solution. ADI type methods [41] and the Smith
method [49] are other classes of methods. We refer to [22] for an overview. Also see
[21][26][37].

For efficient computations, we want Fj to be low rank. Once Zj starts to converge
to an eigenvector, we know that Zj has r = 1 or 2 eigenvalues with large absolute
values and n − r with small absolute values, but that is not the case for the first few
iterations. If we start with a rank one Z1, F1 has rank two, and, depending on the
problem, Y2 (and hence Z2) can have large rank, which would lead to a large rank F2.
Although we mentioned that the eigenvalues of Y2 decay quickly, the rank required
for a good approximation of Y2 may be rather large. Such large ranks may prohibite
the efficient solution of (3.3). We therefore introduce the projection step described in
the following section.

3.2. Rank reduction by projection. Ideally, we would like to work with r = 1
or 2 rank iterates {Zj}j≥1. The eigenvalue iterate, λj is the Rayleigh quotient given
by (3.1). A ‘better’ approximation can be found by projecting (1.4) on a subspace. If
Vj ∈ Rn×k, then the projection of (1.5) (and similarly of (1.4) onto Range(Vj ⊗ Vj))
leads to the following order k problem:

ÃjZ̃jM̃
T
j + M̃jZ̃jÃ

T
j = λ̃(B̃jZ̃jM̃

T
j + M̃jZ̃jB̃

T
j )(3.4)

where Ãj , B̃j , and M̃j , given by (3.2), are k × k matrices. The eigenvector approx-

imation for (1.5) associated with λ̃ is VjZ̃jV
T
j . There are two advantages of this
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projection step:
1. we expect to have a ‘better’ approximate eigenpair, as is usually the case with

projection methods (e.g. Arnoldi’s method compared to the power method,
Jacobi-Davidson compared to the Newton method),

2. and the approximate eigenvector Zj+1 has rank r = 1 or 2 .
With this idea, we obtain the following algorithm:

Algorithm 3.3 (Inverse iteration for (1.5) with projection).
1. Given V1 with ‖V1‖2 = 1.
2. For j = 1, 2, . . .

2.1. Compute (3.2) and solve (3.4) in factored form: Z̃j = ṼjDj Ṽ
T
j .

2.2. Let Vj = Vj Ṽj ∈ Rn×r with r = 1 or 2.
2.3. If λj is accurate enough, then stop.

2.4. Solve (3.3) in factored form Yj = Vj+1D̃jV
T
j+1 with Vj+1 ∈ Rn×k.

The ‘eigenvector’ VjDjV
T
j is a rank one or rank two matrix. When λj is computed

from (3.4), the associated µ’s can be computed using (2.4) with V = Vj . The residual
norm

‖(A + λjB)Vjy − µMVjy‖2

is relatively cheap to compute (much cheaper than solving the Lyapunov equation).
It is used for the stopping criterion in Step 2.3.

Note that in Step 1, we do not assume D1 is given and that the normalization
step after the Lyapunov solve has been removed. The matrix D̃j is not required for
the computation of the eigenvector.

3.3. A block Krylov Lyapunov solver. For our numerical experiments, we
used a block Krylov method. We explain the details here. It should be noted that
any Lyapunov solver can be used in inverse iteration.

We first write (3.3) in the form

SYj + YjS
T = A−1FjA

−T(3.5)

with S = A−1M . We have chosen to invert A since this is closer to the inverse
iteration method for the standard eigenvalue problem, and since the eigenvalues of
M−1A of large modulus are less important than those near zero. The eigenvalues
with large modulus are usually related to discretization errors of the PDE and should
not play a major role. Note that the right-hand side is stored in factored form as
A−1FjA

−T = PjCjP
T
j . If Vj has rank r, Pj has rank between r and 2r.

Lyapunov equations with rank one right-hand sides can be solved by Arnoldi’s
method. The Arnoldi method builds an orthogonal basis of the Krylov space for the
matrix S:

span{w1, Sw1, S
2w1, . . . , S

k−1w1}

and a k×k upper Hessenberg matrix Hk = WT
k SWk. Here is an outline of the Arnoldi

algorithm:
Algorithm 3.4 (Arnoldi).

1. Given w1 with ‖w1‖2 = 1
2. For j = 1, . . . , k

2.1. Compute w̃j = Swj .

9



2.2. Compute hj = WT
j w̃j ∈ Rj and ŵj = w̃j − Wjhj

2.3. Compute βj = ‖ŵj‖2 and define wj+1 = ŵj/βj

2.4. Let Wj+1 = [Wj wj+1] .

When we collect the matrices hj and coefficients βj in the upper Hessenberg matrix
Hk ∈ Rk×k, i.e.

Hk =




h1 · · · hk−1 hk

β1

. . .
...

...

0
. . .

...
...

0 βk−1

...




,

then we have

SWk − WkHk = wk+1βkeT
k(3.6)

where ek is the last column of the k × k identity matrix.
Suppose we want to solve the Lyapunov equation

SY + Y ST = w1w
T
1 .(3.7)

Let Wk and Hk be computed by the Arnoldi method with starting vector w1. We
look for a solution of the form Y = WkXWT

k . First substituting this into (3.7), and
then using (3.6), we have

(SWk)XWT
k + WkX(SWk)T = w1w

T
1

Wk(HkX + XHT
k − e1e

T
1 )WT

k = −wk+1βkeT
k XWT

k − WkXekβkwT
k+1 .

Multiplication on the left and the right by WT
k and Wk respectively, produces the

Lyapunov equation of order k

HkX + XHT
k = e1e

T
1 .

If k is much smaller than n, this is a cheap problem to solve.
For rank p right-hand sides, we use the block Arnoldi method with p starting

vectors. In the block Arnoldi method, we build the Krylov space

span{Pj , SPj , . . . , S
k/p−1Pj}

which is a subspace of dimension smaller than or equal to k. The extension to the
block Arnoldi method is easy, although rather technical, and therefore omitted, see
[43] for technical details.

3.4. A note on the accuracy of the Lyaponov equation solver. An issue
that is also of importance for the inexact inverse iteration method for the standard
eigenvalue problem Ax = λx, is that the error on the iterative solve should decrease
proportional to the residual norm of the approximate eigenpair. For standard eigen-
problems, inverse iteration requires the solution of

Ayj = xj .(3.8)

10



An Arnoldi based method with zero initial guess for yj produces the Krylov space

span{xj , Axj , . . . , A
k−1xj} .(3.9)

Let rj = Axj −λjxj be the residual of the approximate eigenpair of A at iteration
j. For inexact inverse iteration to converge, we impose that ‖xj − Ayj‖2 ≤ τ‖rj‖2

with τ < 1 [32]. Since at some point, yj makes a small angle with xj , it may be more
appropriate to solve (3.8) with initial guess λ−1

j xj , so that yj = λ−1
j xj + ỹ with

Aỹ = λ−1
j (λjxj − Axj)

= −λ−1
j rj .(3.10)

Because the norm of the right-hand side in (3.10) is proportional to ‖rj‖2, the remain-
ing iterations only have to reduce this norm further with a factor τ . This relative
reduction is usually attained with roughly the same number of iterations for all j.
Since

span{xj , Axj , . . . , A
k−1xj} = span{xj , rj , . . . , A

k−2rj} ,

k−1 iterations for (3.10) produce a k−1 dimensional Krylov space which is a subspace
of (3.9). This implies that k iterations for (3.8) produce ‖xj − Ayj‖2 of the order of
τ‖rj‖2. See [32] for the details.

We have a similar situation for the Lyapunov solution in Algorithm 3.3. Recall
that approximate eigenvectors of (1.5) have the form Zj = x1x

T
2 + x2x

T
1 if µ 6= 0.

(For µ = 0 we can derive a similar result.) With Zj = VjDjV
T
j , we have that

Range(Vj) = Range([x1, x2]). Define the residuals

ri = A−1(A + λjB − µiM)xi

= xi + λjTxi − µiSxi(3.11)

for i = 1, 2, where T = A−1B. As was mentioned before, the eigendecomposition of
the right-hand side of (3.5) is PjCjP

T
j where

Range(Pj) = Range(SVj) + Range(TVj)

= Range([Sx1, Sx2]) + Range([Tx1, Tx2])

= Range([Sx1, Sx2]) + Range([x1 − r1, x2 − r2]) .(3.12)

The last term in (3.12) tends to Range([x1, x2]) = Range(Vj) as r1 and r2 tend to
zero.

Now let, as for the standard eigenvalue problem,

Yj = Ỹj − λ−1
j

(
(x1 − r1)(x2 − r2)

T + (x2 − r2)(x1 − r1)
T
)

(3.13)

where the second term in the right-hand side lies in Range(Pj).
Lemma 3.1.

SỸj + ỸjS
T = O(‖r1||2) + O(‖r2||2) .

Proof. From (3.5) and (3.3), we have that

SYj + YjS
T = S(x1x

T
2 + x2x

T
1 ))TT + T (x1x

T
2 + x2x

T
1 )ST .(3.14)
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Using (3.13), we find that

SỸj + ỸjS
T = Sx1(x

T
2 TT + λ−1

j xT
2 ) + Sx2(x

T
1 TT + λ−1

j xT
1 )(3.15)

+ (Tx2 + λ−1
j x2)x

T
1 ST + (Tx1 + λ−1

j x1)x
T
2 ST

+ O(‖r1‖2) + O(‖r2‖2) .

From (3.11), we have that

Txi + λ−1
j xi = λ−1

j (ri + µiSxi) .

Substituting this into (3.15), we obtain

SỸj + ỸjS
T = λ−1

j Sx1(r
T
2 + µ2x

T
2 ST ) + λ−1

j Sx2(r
T
1 + µ1x

T
1 ST )

+ λ−1
j (r2 + Sµ2x2)x

T
1 ST + λ−1

j (r1 + Sµ1x1)x
T
2 ST

+ O(‖r1‖2) + O(‖r1‖2) .

Since µ1 + µ2 = 0, the terms in µi cancel out and the proof of the lemma follows.
Similar to the solution of (3.8), we see that the solution of (3.14) only requires a
relative reduction of the residual norm by a factor τ .

From the numerical examples, we will indeed see a reducing residual norm for the
Lyapunov equation for a fixed number of Krylov steps.

3.5. The solution of the projected eigenvalue problem. Step 2.1 in Al-
gorithm 3.3 consists of the solution of the small size projected problem. We could
use the QZ method for the related Kronecker eigenvalue problem, but this has two
disadvantages: first, k2 can be of the order of a thousand or more, which makes the
QZ method relatively expensive. More important perhaps is that the obtained eigen-
vector has to be forced to be symmetric to ensure the computed eigenvalue is simple,
and this requires additional manipulations. We therefore use Algorithm 3.2 with the
Bartels and Stewart method [4] as direct Lyapunov solver.

To speed-up the iterations on the small scale problem, we use shifted inverse
iteration, with shift σ, which is equal to zero for the iteration j = 1, and λj−1 for
j > 1:

(Ãj + σB̃j)ỸjM̃
T
j + M̃j Ỹj(Ãj + σB̃j)

T = B̃jZ̃jM̃
T
j + M̃jZ̃jB̃

T
j .

The projected problem is formed from the dominant eigenvectors of the solution
of (3.3). In our numerical examples, we perform the projection with the entire Krylov
space of dimension k, i.e. the Lyapunov solution is not truncated to lower rank.

4. Numerical examples. In this section we present three examples arising from
discretized partial differential equations. We also describe computations on a model
problem to compare our approach with shift-and-invert Arnoldi.

4.1. The Olmstead model. The mathematical model represents the flow of a
layer of viscoelastic fluid heated from below [38] [17]. The equations are

∂u

∂t
= (1 − C)

∂2v

∂X2
+ C

∂2u

∂X2
+ Ru − u3

B
∂v

∂t
= u − v
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Table 4.1
Result for the Olmstead equation for R = 3 and k = 20

j λj µ ‖rj‖2 γj

1 1.78806 −0.250361 6.0 · 10−1 8.5 · 10−05

2 1.76932 1.26259 4.7 · 10−1 3.4 · 10−10

3 1.56152 5.19272 1.4 · 100 1.8 · 10−8

4 1.93286 −4.68848i 7.6 · 10−1 6.5 · 10−9

5 1.44784 −4.18513i 4.5 · 10−3 9.2 · 10−10

6 1.44784 −4.18513i 1.7 · 10−6 5.3 · 10−12

7 1.44784 −4.18513i 3.8 · 10−8 5.4 · 10−14

8 1.44784 −4.18513i 1.1 · 10−7 4.4 · 10−14

9 1.44784 −4.18513i 3.7 · 10−8 2.7 · 10−14

where u represents the speed of the fluid and v is related to viscoelastic forces. The
boundary conditions are u(0) = u(1) = 0 and v(0) = v(1) = 0. After discretization
with central differences with grid-size h = 1/(n/2 + 1), the equations may be written
as dx/dt = f(x) with x = [u1, v1, u2, v2, . . . , uN/2, vN/2]

T . We consider the Jacobian
A + λB = ∂f/∂x for n = 20, 000, B = 2, C = 0.1 and λ = R ∈ [0.6, 5], evaluated in
the trivial steady state solution.

We used Algorithm 3.3 to solve this problem with the following parameters. We
discretized the problem around R = 3. We used k = 20 Krylov vectors in the solution
of the Lyapunov equation. Table 4.1 shows the norm of

rj = Ax + λBx − µMx ,

the residual norm of the Lyapunov equation (Step 2.4)

γj = ‖SYjT
T + TYjS

T − PjCjP
T
j ‖F ,

versus the iteration count. Note that λ = 1.44784 corresponds to R = 4.44784. The
final value of µ is ±4.18513i.

Figure 4.1 shows slow decay for the absolute values of the eigenvalues of Y1 (first
iteration) and the gap between ‘large’ and ‘small’ eigenvalues of Y9. The two dominant
eigenvalues of Y9 appear to be positive, which confirms, following Theorem 2.2, that
µ is purely imaginary. Note that the solution of the Lyapunov equation in the first
iteration, Y1, can be approximated by a rank r = 13 matrix with a relative error 10−6.
If we would use Algorithm 3.2, a block Krylov method with block size 26 would have
to be used. This is too impractical by far. The projection step in Algorithm 3.3 solves
this difficulty.

4.2. The 2D Brusselator model. The trimolecular reaction scheme in a two-
dimensional square reactor can be studied by the Brusselator model. For more details,
see [8, Chapter 5].

In this example, α and β are the concentrations of a continuous input of both
reactants where the unknowns X and Y are the concentrations of the other compo-
nents in the chemical reaction. Under certain conditions of the parameters, a steady
state solution is reached for X ≡ α and Y ≡ β/α. The stability of the steady state
can be analysed by first perturbing the solution into X = α+x and Y = β/α+y and
then analysing the stability of the linear equations

∂x

∂t
= (β − 1)x + α2y + Dx∇

2x
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Fig. 4.1. Eigenvalues of Y1 and Y9 for the Olmstead eqution

∂y

∂t
= −βx − α2y + Dy∇

2y

where

∇2 =
∂2

∂r2
+

∂2

∂s2
,

and r and s are the spatial coordinates. The boundary conditions are

∂x(0, s, t)

∂r
=

∂x(r, 0, t)

∂s
=

∂x(L, s, t)

∂r
=

∂x(r, L, t)

∂s
= 0

∂y(0, s, t)

∂r
=

∂y(r, 0, t)

∂s
=

∂y(L, s, t)

∂r
=

∂y(r, L, t)

∂s
= 0

The parameters are chosen as Dx = 1.6 · 10−3, Dy = 8.0 · 10−3, α = 2.0 and β = 4.6.
Discretization by finite differences with gridsize h = L/(N + 1) leads to the linear
system of ODE’s u̇ = (A+λB)u of dimension n = 2N2. Note that for this problem B
is again a singular matrix: it has eigenvalues 0 and 1. We have chosen L = 0.0798443.
In our analysis, we chose λ = β as parameter and n = 20, 000.

We used k = 20 Arnoldi vectors, and a tolerance of τ = 1. 10−4. The method
converged in one iteration, i.e. after one iteration λ = 5 was found with a residual
norm ‖(A + λjB − µM)x‖2 ≃ 10−8. The value of λ = 5 corresponds to β = 5 and
µ = ±2i.

4.3. Heat equation. The last example is the heat equation on a square grid
with spatial coordinates (x, y) in [0, 1] × [0, 1]:

∂u(x, y)

∂t
+ ∇2u(x, y) = 0 for y > 0

∂u(x, 0)

∂t
+ ∇2u(x, 0) + λ

∫ 1

x=0

u(x, y) = 0 for y = 0 .

14



 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0  2  4  6  8  10  12  14  16  18  20

k=10
k=30

k=100
k=200
k=300

Fig. 4.2. Result for the 2D heat equation

The last term in the equation for y = 0 is a controller that consists of the mean
temperature in the x direction. We discretized the problem with 100 points in each
direction in order to obtain an n = 10, 000 size problem.

We used Algorithm 3.3 with four values of the number of Arnoldi vectors, k. The
residual norm ‖(A+λB−µM)x‖2 is plotted for the four values of k as a function of the
iteration count j in Figure 4.2. All runs converge to the same value of λ = 4.67958 and
eigenvalue µ = 0. The figure shows convergence behaviour that is typical for inexact
inverse iteration: the more accurate the linear solves, the faster is the method, with
a maximum convergence speed for the exact solves. There is a slight difference with
standard eigenvalue problems: since we use the entire Krylov space in the projection in
Algorithm 3.3, a larger k induces a larger search space so that eigenvalue approximates
can be slightly more accurate.

4.4. Comparison with shift-and-invert Arnoldi. Here we compare the method
introduced in this paper with the traditional shift-and-invert Arnoldi approach. We
have constructed a problem to illustrate the points that we made in §1.

We generated n × n matrices with n = 10000, M = I, and where A and B are
such that, for λ = 1, A+λB has eigenvalues −1,−2, . . . ,−9998 and the complex pair
±30i; and for λ = 0, A+λB has eigenvalues −1,−2, . . . ,−9998 and the complex pair
−30 ± 30i. That means that the right-most eigenvalue for λ = 0 is −1, which would
correspond to a stable steady state in a dynamical systems setting, whereas for λ = 1,
the rightmost eigenvalues are the purely imaginary pair ±30i. As λ varies from 0 to
1 the complex pair moves towards the imaginary axis. This construction simulates
the physical situation in the double-diffusive convection example [50], [6] mentioned
in the Introduction.

From earlier work [5] [12] [7] [34], we know that detecting right-most eigenvalues
is not always an easy task. The reason is that most eigenvalue eigenvalue solvers
search for eigenvalues near a target point, called a shift.

We compare the method from this paper with the shift-and-invert Arnoldi method.
First we take the exact value of the parameter λ for which A + λB has the purely
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imaginary pair ±30i, that is we set λ = 1. We apply the shift-and-invert Arnoldi
method with shift zero and a random starting vector to (A + λB)−1M which in this
case is simply (A + B)−1. After 10 Arnoldi steps there was a Ritz value at −1 with
residual norm 1.3 · 10−7; that is, the eigenvalue nearest the shift was calculated, not
the eigenpair on the imaginary axis. In fact, there was no Ritz value near ±30i. How-
ever, after 20 Arnoldi steps the purely imaginary eigenvalue was found with residual
norm 3.6 · 10−13.

Next, we apply our method with λ = 0, that is we do not assume we know the
value of λ where there is a purely imaginary eigenpair. We used a block Krylov
space of dimension 10. Since we use the starting vector v ⊗ v in inverse iteration, we
have a block Krylov space of block size two, which means that 5 Arnoldi steps were
performed. The eigenpair µ = ±30i and the parameter value λ = 1 were calculated
with a residual norm of 2 · 10−13. This is cheaper than shift-and-invert Arnoldi for
one value of λ.

In a practical continuation setting using shift-and-invert Arnoldi, where the exact
value of the parameter λ was not known beforehand, sparse factorizations of A + λB
would have to be carried out for several values of λ and then the consequent Krylov
spaces would have to be constructed.

The shift-and-invert Arnoldi method can be used with a non-zero shift in order
to improve its reliability [11] [34]. When we used the shift 10, i.e. we compute the
eigenvalues of (A + B + 10I)−1, then eigenvalue µ = ±30i was found with a residual
norm 2.0 · 10−7 after 20 iterations. This is still more expensive than our method.

5. Conclusions. We have described a method for the computation of good start-
ing values for use in algorithms to compute Hopf bifurcations in large scale dynamical
systems. This work was originally motivated by the use of the bialternate product
in [19] and [15], which has the significant advantage that a good starting guess for
an unknown complex eigenvalue is not required. The disadvantage of the bialternate
product is that it is an n2 dimensional matrix, though the restriction to the anti-
symmetric subspace reduces this to n(n− 1)/2. We overcome this by a reformulation
as an inexact inverse iteration algorithm that requires a sequence of n−dimensional
Lyapunov-type equations, with the key feature that the right hand sides are of low
rank. This results in an efficient procedure, provided the Lyaponuv equations are
solved accurately. Numerical results illustrate the power of the method.

The results of this paper could also be used for computing eigenvalues of Ax =
θMx nearest the imaginary axis. Shift-and-invert based methods are not always
reliable when a rough idea of Im(θ) is unknown. Our method could be applied for
finding the smallest λ for which θ = λ + iµ, λ, µ ∈ R, is an eigenvalue without
computing µ.
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