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The picture
There are problems from applications where matrix (operator) polynomials
or matrix power series play an important role: queueing models, hyperbolic
quadratic eigenvalue problems, algebraic Riccati equations, etc

A typical example from queueing models: [Neutz 89]
Given m ×m nonnegative matrices A0,A1,A2, . . ., such that
A0 + A1 + A2 + · · · is stochastic, compute the minimal nonnegative
solution to the matrix equation

X = A0 + A1X + A2X
2 + A3X

3 + · · ·

Compute the canonical Wiener-Hopf factorization

I −
+∞∑
i=−1

z iAi+1 = U(z)L(z) := (
+∞∑
i=0

z iUi )(I − z−1G )

where U(z) and L(z) are analytic and nonsingular inside and outside the
unit disk, respectively.
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The picture

There exist effective algorithms based on matrix polynomial
manipulation for solving these problems

their effectiveness relies on the quadratic convergence in the generic
case and on their numerical stability

the most popular algorithms are the Strucured Doubling Algorithm
(SDA) and the Cyclic Reduction (CR)

the latter is widely used in the framework of Markov chains and
stochastic processes, the former is well-known in control problems
governed by the Riccati equations

Both of them have ancient and different origins and have been object
of many papers with adaptations and variants, but rely on the same
idea of repeated “squaring”.
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Aim of this talk

First part:

to give an overview of this subject in the framework of matrix
polynomials

to point out the interplay of CR and SDA

Second part:

to show the richness and the nice features of CR

to present the problems that still require some work
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The concept of squaring

Let us recall the Graeffe-Lobachevsky-Dandelin iteration for scalar
polynomials [Ostrowski 40]:

p(z) polynomial of degree n with roots ξ1, ..., ξn such that

|ξ1| ≤ · · · ≤ |ξk | < 1 < |ξk+1| ≤ · · · ≤ |ξn|

Multiply p(z) and p(−z) and obtain

p(z)p(−z) = p1(z2), p1(z) polynomial of degree n

Remark

The roots of p1(z) are the square of the roots of p(z)
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The squaring property

In general, define
pν+1(z2) = pν(z)pν(−z)

The roots of pν(z) are ξ2
ν

i , i = 1, . . . , n so that

|ξ1|2
ν ≤ · · · ≤ |ξk |2

ν︸ ︷︷ ︸ < 1 < |ξk+1|2
ν ≤ · · · ≤ |ξn|2

ν︸ ︷︷ ︸
↓ ↓
0 ∞

In other words, for ν large enough one has p
(ν)
k 6= 0 and

lim
ν

pν(z)

p
(ν)
k

= zk
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The case of matrix polynomials

Let Ai , i = 0, 1, . . . , n be m ×m matrices, define the matrix polynomial

P(z) = A0 + zA1 + · · ·+ znAn, An 6= 0

Remark

Due to lack of commutativity, P(z)P(−z) is not a matrix polynomial in z2

However, for n = 2 and P(z) = A0 + zA1 + z2A2, with det A1 6= 0, one has

P(z)A−1
1 P(−z) = P1(z2), P1(z) = A

(1)
0 + zA

(1)
1 + z2A

(1)
2
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
A

(1)
0 = A0A

−1
1 A0

A
(1)
1 = −A1 + A0A

−1
1 A2 + A2A

−1
1 A0

A
(1)
2 = A2A

−1
1 A2

Remark

The roots of det P1(z) are the squares of the roots of det P(z), i.e., the
squaring property is preserved.

Define

Pν+1(z2) = Pν(z)
(
A

(ν)
1

)−1
Pν(−z)

where we assume that this sequence is well defined, i.e., det A
(ν)
1 6= 0

Then the roots of Pν(z) are such that

ξ
(ν)
i = ξ2

ν

i , i = 1, . . . ,m.
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If the roots of det P(z) are such that:

|ξ1| ≤ · · · ≤ |ξm| < 1 < |ξm+1| ≤ · · · < |ξ2m|

one should expect that

lim Pν(z) = zA?1, with det A?1 6= 0

that is, A
(ν)
0 → 0, A

(ν)
2 → 0, A

(ν)
1 → A?1.

Formally, the algorithm obtained this way coincides with the
Cyclic Reduction (CR) algorithm introduced by Gene Golub at the end
of 1960’s for solving the discrete Poisson equation over a rectangle, if
applied to a general block tridiagonal block Toeplitz system [Hockney 65]
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The squaring property of the roots of P(z) can be rephrased as follows:

If the m ×m matrix G solves the equation

A0 + A1X + A2X
2 = 0 (1)

then the matrix G 2ν
solves the equation

A
(ν)
0 + A

(ν)
1 X + A

(ν)
2 X 2 = 0

This property provides a means to compute the (semi) stable solution G of
the quadratic equation (1) that is, such that ρ(G ) < 1 (ρ(G ) ≤ 1), or
equivalently, to compute the canonical Wiener-Hopf factorization

z−1A0 + A1 + zA2 = (U0 + zU1)(I − z−1G )

U0 = A0 + A1G , U1 = A
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Solving the equation A0 + A1X + A2X
2 = 0

{
A0 + A1X + A2X

2 = 0
A0X + A1X

2 + A2X
3 = 0

eliminate X 2 → A0 + Â(1)X + A
(1)
2 X 3 = 0

{
A0 + Â

(1)
1 X + A

(1)
2 X 3 = 0

A
(1)
0 X + A

(1)
1 X 3 + A

(1)
2 X 5 = 0

eliminate X 3 → A0 + Â(2)X + A
(2)
2 X 5 = 0

At the step ν one has

A0 + Â(ν)X + A
(ν)
2 X 2ν+1 = 0, Â(ν+1) = Â(ν) − A

(ν)
0 (A

(ν)
1 )−1A

(ν)
2

Since A
(ν)
2 → 0, ρ(X ) ≤ 1, if A

(ν)
2 has a uniformly bounded inverse then then

−(Â(ν))−1A0 → X
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Change of the scenario: Structured Doubling Algorithms

The generalization of the Graeffe iteration enables one to generate a
sequence of quadratic matrix polynomials having roots which are squared
at each step and allows to solve quadratic matrix equations

Something similar can be done for linear matrix pencils [Anderson 78]

Consider the linear matrix pencil L− zU where we assume that L ∈ L,
U ∈ U , and L and U are two given matrix groups. We say that the pencil
is in LU–canonical form

W.l.o.g, assume that det U 6= 0 so that we may define A = U−1L.

Observe that the eigenvalue problem for A is equivalent to the generalized
eigenvalue problem for the pencil L− zU.
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The idea of SDA

A2 =
(
U−1L

) (
U−1L

)
= U−1

(
LU−1

)
L,

so that if the matrix LU−1 can be factored as

LU−1 = Ũ−1L̃, L̃ ∈ L, Ũ ∈ U ,

then
A2 = U−1

1 L1, U1 = ŨU ∈ U , L1 = L̃L ∈ L

That is, given the pencil L− zU in canonical form one can construct the
pencil L1 − zU1, still in canonical form, whose eigenvalues are the squares
of the eigenvalues of L− zU.

Problem: to compute the UL factorization of a product of type LU, or,
more simply to solve the UL–LU problem where the invertibility of U is not
required [Benner, Byers 06]:

given L ∈ L, U ∈ U , compute Ũ ∈ U , L̃ ∈ L such that

ŨL = L̃U
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Remark

The recursive application of the above formulae provides a sequence of
linear pencils Uν − zLν in canonical form such that the eigenvalues of the
pencil at step ν are λ2ν

i , where λi are the eigenvalues of the original pencil.

The squaring property can be expressed in terms of deflating subspaces:

Property

If V and W are matrices of size m × k, k × k , respectively, with k < m:

=V U V
W

L

i.e., if V spans a deflating subspace for the pencil, then

=

2
ν

W
UL

ν
V

ν V

that is, V still spans a deflating subspace for the pencil Lν − zUν .
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Different algorithms can be obtained by using different classes U , L.
Since the structure of L and U is preserved, the algorithms in this class are
called Structured Doubling Algorithms (SDA)

Example: SDA-1 [Chiang, Chu, Guo, Lin, Xu 09]

Consider the linear matrix pencil L− zU in the standard structured form,
i.e.,

L =

[
E 0
−H I

]
} n
}m

, U =

[
I −G
0 F

]
} n
}m

,

Then a simple computation shows that

L1 =

[
E1 0
−H1 I

]
, U1 =

[
I −G1

0 F1

]
where

E1 = E (I − GH)−1E , H1 = H + F (I − HG )−1HE

G1 = G + E (I − GH)−1GF , F1 = F (I − HG )−1F
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Example: QR factorization

Example: SDA-2 [Chiang, Chu, Guo, Lin, Xu 09] The group condition
may be weakened.

Consider the pencil L− zU in the 2nd standard structured form

L =

[
E 0
−H I

]
, U =

[
−G I
F 0

]
then SDA keeps the structure and generates a sequence of pencils
Lν − zUν such that

Lν =

[
Eν 0
−Hν I

]
, Uν =

[
−Gν I
Fν 0

]
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Comparison of SDA and CR

SDA acts on
linear matrix pencils

CR acts on
quadratic matrix polynomials

Given a matrix pencil in canonical
form

L− zU,

SDA generates a sequence of ma-
trix pencils

Lν − zUν

in canonical form whose eigenval-
ues have the repeated squaring
property

Given a quadratic matrix polyno-
mial

A0 + zA1 + z2A2,

CR generates a sequence of
quadratic matrix polynomials

A
(ν)
0 + zA

(ν)
1 + z2A

(ν)
2 ,

whose roots have the repeated
squaring property
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Comparison of SDA and CR

If LV = UV W then

LνV = UνV W 2ν

If A0 + A1X + A2X
2 = 0

A
(ν)
0 + A

(ν)
1 X 2ν

+ A
(ν)
2 (X 2ν

)2 = 0

SDA can be applied if

det(I − GνHν) 6= 0

CR can be applied if

det A
(ν)
1 6= 0

A natural question arises: are they the same algorithm?
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Linearization and quadraticization

A matrix polynomial

P(z) = A0 + zA1 + z2A2

can be “linearized” into a matrix pencil

A(z) =

[
0 I
A0 A1

]
− z

[
I 0
0 −A2

]
where [

0 I
A0 A1

] [
I
X

]
=

[
I 0
0 −A2

] [
I
X

]
X

and X is any solution of the equation A0 + A1X + A2X
2 = 0

Correspondence between deflating subspace of the matrix pencil and
solutions of the quadratic matrix equation
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Linearization and quadraticization

A matrix pencil

A(z) =

[
L11 L12

L21 L22

]
− z

[
U11 U12

U21 U22

]
can be transformed into a quadratic matrix polynomial:

P(z) =

[
I 0
0 zI

]
A(z)

=

[
L11 L12

0 0

]
+ z

[
U11 U12

L21 L22

]
+ z2

[
0 0

U21 U22

]
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SDA-1 is a specific CR

Consider the linear pencil associated with SDA-1

A(z) =

[
E 0
−H I

]
− z

[
I −G
0 F

]
construct the quadratic matrix polynomial

P(z) =

[
I 0
0 zI

]
A(z) =

[
E 0
0 0

]
+ z

[
I −G
−H I

]
+ z2

[
0 0
0 F

]
apply CR to P(z) and get

Pk(z) =

[
I 0
0 zI

]
Ak(z)

Then Ak(z) are the linear pencils generated by SDA–1 [B., Meini, Poloni
10]
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CR is SDA-2

Given
A0 + A1z + A2z

2

consider the following linearization [Guo 08][
0 I
A0 0

]
+ z

[
A2 0
−A1 −I

]
applying SDA-2 yields the sequence[

−Â(ν) I

A
(ν)
0 0

]
+ z

[
A

(ν)
2 0

A
(ν)
1 −I

]

where Pν(z) = A
(ν)
0 + zA

(ν)
1 + z2A

(ν)
2 is the polynomial sequence generated

by CR.
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Resuming

CR→SDA linearization

SDA→CR quadraticization

Advantages of having two different points of view: more tools for

proving applicability conditions

proving convergence conditions

proving convergence properties

analyzing critical cases

solving problems from applications

finding generalizations
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The world of CR is richer than that of SDA
CR and analytic functions

Define the Laurent polynomial ϕ(z) := z−1P(z) = A0z
−1 + A1 + A2z

and the matrix function ψ(z) := ϕ(z)−1 defined for z 6= ξi

ψ(z) is analytic in the annulus A = {z ∈ C : r = |ξn| < |z | < |ξn+1| = R}

1 Rr

therefore it can be represented as a Laurent series

ψ(z) =
+∞∑

i=−∞
z iHi , z ∈ A

For the analyticity of ψ in A one has ∀ ε > 0 ∃ θ > 0 such that{
||Hi || ≤ θ(r + ε)i , i > 0

||Hi || ≤ θ(R − ε)i , i < 0
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CR and analytic functions

Now, for the polynomials Pν(z) generated by CR denote

ϕν(z) := z−1Pν(z), ψν(z) := ϕν(z)−1

One has

ϕ1(z2) = ϕ(z)A−1
1 ϕ(−z) =

(
ϕ(−z)−1 + ϕ(z)−1

2

)−1

so that ψν+1(z2) = (ψν(z) + ψν(−z))/2 and

ψν(z) =
∞∑

i=−∞
z iHi2ν , z ∈ A

i.e., ψν(z) converges double exponentially to the constant H0.

Under the assumption det H0 6= 0, the sequence ϕν(z) converges to H−1
0 .

D.A. Bini (Pisa) Doubling algorithms Mopnet-3 Edinburgh 25 / 44



CR and analytic functions

The following equivalent conditions imply that det H0 6= 0:

there exist G and F such that A0 + A1G + A2G
2 = 0,

A2 + A1F + A0F
2 = 0, ρ(G ), ρ(F ) < 1

there exist G and Z such that A0 + A1G + A2G
2 = 0,

A0 + ZA1 + Z 2A2 = 0, ρ(G ), ρ(Z ) < 1

there exist the canonical Wiener-Hopf factorizations of
z−1A0 + A1 + zA2 and z−1A2 + A1 + zA0

Moreover,
G = H−1H

−1
0 , F = H1H

−1
0
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CR and Schur complements

Consider the Laurent polynomial

ϕ(z) = z−1P(z) = z−1A0 + A1 + zA2

From the identity:

ϕ1(z2) = ϕ(z)A−1
1 ϕ(−z) = A1 − (z−1A0 + zA2)A−1

1 (z−1A0 + zA2)

one discovers a Schur complement in functional form

Matrix translation:

associate with ϕ(z) the infinite block tridiagonal block Toeplitz matrix

T = Trid(A0,A1,A2) =


. . .

. . .
. . . 0

A0 A1 A2

0
. . .

. . .
. . .


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CR and Schur complements

The Schur complement of the submatrix of T formed by the even
numbered rows and column is the block tridiagonal matrix T1

associated with the Laurent polynomial ϕ1(z).

Applicability of CR holds for diagonally dominant matrices, symmetric
positive definite matrices, M-matrices; numerical stability is under
control;

The νth step of CR can be performed if and only if
Trid2ν−1(A0,A1,A2) is nonsingular

If Trid2ν−1(A0,A1,A2) should be singular or ill-conditioned, then
simple formulas, based on Schur complements can be designed for
skipping the νth step → possibility to implement Look-ahead
strategies
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Extensions: matrix power series

The Graeffe-Lobachevsky-Dandelin algorithm can be generalized to matrix
Laurent power series ϕ(z) analytic and invertible for z ∈ A:

ϕ(z) =
+∞∑

i=−∞
Aiz

i , ψ(z) := ϕ(z)−1 =
+∞∑

i=−∞
z iHi

ϕ1(z2) = ϕ(z)

(
ϕ(z) + ϕ(−z)

2

)−1

ϕ(−z) =

(
ψ(−z) + ψ(z)

2

)−1

is analytic and invertible in A and

ψ1(z2) =
ψ(z) + ψ(−z)

2
=

+∞∑
i=−∞

z iH2i
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The general convergence Theorem

Consider the sequence generated by generalized CR

ϕν+1(z2) = ϕν(z)

(
ϕν(z) + ϕν(−z)

2

)−1

ϕν(−z)

One deduces that

ϕν(z)−1 =
+∞∑

i=−∞
z iHi2ν

The analyticity of ψ(z) implies

Theorem

If detϕ(z) 6= 0 for z ∈ A, and det H0 6= 0, where ϕ(z)−1 =
∑+∞

i=−∞ z iHi ,
and if CR can be carried out with no breakdown then the sequence ϕν(z)
generated by CR converges double exponentially to the constant H−1

0 .
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The same formula can be written in terms of Schur complement as

ϕ1(z) = zϕeven − ϕodd(z)ϕeven(z)−1ϕodd(z)

where

ϕeven(z2) =
ϕ(z) + ϕ(−z)

2
,

ϕodd(z2) =
ϕ(z)− ϕ(−z)

2

The nice properties of Schur complements still apply
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Similarly to the quadratic case, we are able to complement CR with
suitable relations in order to compute the Wiener-Hopf factorization of
ϕ(z) and of ϕ(−z) in the following cases

ϕ(z) =
+∞∑
i=−1

z iAi = (
+∞∑
i=0

z iUi )(I − z−1G )

ϕ(z) =
+∞∑

i=−k

z−iAi = (
+∞∑
i=0

z iUi )(
k∑

i=0

z−iLi ), k > 1

that include M/G/1 and G/M/1 Markov Chains Non-Skip-Free Markov
Chains (k > 1) [Neutz 89], [B., Latouche, Meini 05]

Implementations of these algorithms for problems encountered in queueing
models are contained in the package SMCSolver

[Van Houdt], ftp://ftp.win.ua.ac.be/pub/pats/tools/
[B, Meini, Steffé, Van Houdt]
http://bezout.dm.unipi.it/SMCSolver/
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Some questions
We are not yet able to design algorithms for computing the Wiener-Hopf
factorization of a general Laurent series

ϕ(z) =
+∞∑

i=−∞
z iAi =

+∞∑
i=0

z iUi

+∞∑
i=0

z−iLi

Remark. Since ϕ(z) is analytic in A, its coefficients decay exponentially.
Therefore, numerically ϕ(z) is approximated by the sequence of Laurent
polynomials

φk(z) =
k∑

i=−k

z iAi

Question 1

Under which conditions there exists the W-H factorization φk(z) =
Uk(z)Lk(z) and do the coefficients of Uk(z) and Lk(z) converge to the
corresponding coefficients of U(z) and L(z)?
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Some questions

In certain applications, quadratic polynomials are encountered where the
matrix coefficients A0,A1,A2 have infinite size.

Question 2

Assuming that there exists the W-F factorization

ϕ(z) = U(z)L(z) of ϕ(z) = z−1A0 + A1 + zA2,

under which conditions there exists the W-H factorization

φk(z) = Uk(z)Lk(z)

of the function φk(z) obtained by truncating the blocks A0,A1,A2 to finite
size k, and under which assumptions the k × k coefficients of Uk(z) and
Lk(z) converge to the corresponding coefficients of U(z) and L(z)?
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Some questions
For ϕ(z) =

∑+∞
i=−1 z iAi the following sufficient condition for det H0 6= 0

holds [B, Meini, Spitkovsky]:

Theorem

If there exist solutions G and F to the equations

∞∑
i=−1

AiX
i+1 = 0,

∞∑
i=−1

Y i+1Ai = 0,

such that ρ(G ) < 1, ρ(F ) < 1, then det H0 6= 0 and ϕν(z) converge
double exponentially to the constant power series H0.

This result is false for general Laurent power series.

Question 3

Find conditions under which the existence of the W-H factorizations of ϕ(z)
and ϕ(−z) imply the nonsingularity of H0, for a general ϕ(z).
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Some questions

If some roots of det(A0 + zA1 + z2A2) lie in the unit circle convergence of
CR is more critical.

Some results are available in [Guo, Higham, Tisseur] which guarantee
(linear) convergence

Experiments show that, even though convergence of −Â(ν)A0 to G may
fail, the non-unitary eigenvalues of −Â(ν)A0 still converge. Some results
are available from [Li, Chu, Lin, JCAM 2010] but the analysis is not
complete

The case of ϕ(z) =
∑+∞

i=−k z iAi such that detϕ(z) is zero for some z in
the unit circle is not covered yet
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Further extensions: some reductions

reduction of a matrix polynomial to a quadratic polynomial

If G is a solution of
n∑

i=−1

AiX
i+1 = 0

then the enlarged matrix

G =


0 . . . 0 G
0 . . . 0 G 2

...
...

...
...

0 . . . 0 Gn


solves the enlarged equation

A0 +A1X +A2X 2 = 0

where
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A0 +A1X +A2X 2 = 0

A0 =


0 . . . 0 A−1

0 . . . 0 0
...

...
...

...
0 . . . 0 0

 , A1 =


A0 . . . . . . An−1

A−1 A0
. . .

...
. . .

. . .
...

0 A−1 A0

 ,

A2 =


An 0

An−1
. . .

...
. . .

. . .

A1 A2 . . . An


An m ×m matrix polynomial equation of degree n is reduced to an
(mn)× (mn) quadratic matrix equation
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A different reduction: [Ramaswami]

G =


G 0 . . . 0
G 2 0 . . . 0
...

...
...

...
G n 0 . . . 0


solves the enlarged equation A0 +A1X +A2X 2 = 0 where

A0 =


A−1 0 . . . 0

0 0 . . . 0
...

. . .
. . .

...
0 0 . . . 0

 , A1 =


A0 A1 . . . An−1

I
. . .

I

 ,

A2 =


0

−I
. . .
. . .

. . .

−I 0


In the case of a matrix power series, one gets a quadratic matrix equation

with semi-infinite blocks
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Further extensions: Sign function iteration

Define the following functions:

J(t) = (t + t−1)/2 Joukowski

C (t) = (t − 1)/(t + 1) Cayley

S(t) = t2 Square

It holds
C (J(t)) = S(C (t)), C (−S(t)) = J(C (t)),

C (−t) = 1/C (t), C (t−1) = −C (t)
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This implies the following

Property

P(z)(A0 − A2)−1P(z−1) = P1(J(z))

The roots of P1(z) coincide with J(λi ), where λi are the roots of P(z).

Sign function iteration for matrix polynomials:

the roots of Pν(z) are
J ◦ · · · ◦ J︸ ︷︷ ︸(λi )

2ν

lim Pν(z) = (−1 + z2)A?1

Application: computing the solutions X+ and X− of the equation
A0 + A1X + A2X

2 = 0 such that σ(X+) ⊂ C+, σ(X−) ⊂ C−.
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