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Abstract

In this paper a new fast algorithm for the computation of the distance of a stable
matrix to the unstable matrices is provided. The method is based on finding a
two-dimensional Jordan block corresponding to a pure imaginary eigenvalue in
a certain two-parameter Hamiltonian eigenvalue problem introduced by Byers
(SIAM J. Sci. Statist. Comput., 9 (1988), pp. 875–881). Numerical results
are presented for several examples and comparison is made with the methods
of Boyd & Balakrishnan (Systems Control Lett., 15 (1990), pp. 1–7) and He &
Watson (SIAM J. Matrix Anal. Appl., 20 (1998), pp. 101–116).
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1. Introduction

This paper introduces a method for computing the distance of a stable matrix
to the set of unstable matrices. Let A be a complex n × n matrix with all
its eigenvalues in the open left half plane. In this case A is called a stable
matrix. Stability is a very important property for many physical and engineering
applications (see, for example, [11, 12] for a collection of examples). However,
a perturbation E to the matrix A may lead to eigenvalues of A + E crossing
the imaginary axis and hence the matrix A+E being unstable. Two important
papers that deal with the problem of finding the smallest perturbation E which
makes A + E unstable are those of van Loan [14] and Byers [4] which we now
discuss.

The smallest singular value of A ∈ Cn×n satisfies

σmin(A) = min{‖E‖ | det(A + E) = 0, E ∈ C
n×n}, (1)

where ‖ · ‖ denotes either the 2-norm or the Frobenius norm (see [4]). The
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distance of a matrix A to instability can be described as

β(A) = min{‖E‖ | η(A + E) = 0, E ∈ C
n×n},

where η(A) = max{Re(λ) |λ ∈ Λ(A)}. If η(A) is negative, A is stable and
if A + E has an eigenvalue on the imaginary axis then E is a destabilising
perturbation. In this case (A + E − ωiI)z = 0 for some ω ∈ R and z ∈ Cn.
Using (1) this leads to the following definition of the measure of the distance to
instability of a stable matrix A as defined in [14],

β(A) = min
ω∈R

σmin(A − ωiI),

where σmin(A − ωiI) is the smallest singular value of A − ωiI. Clearly for any
ω ∈ R an upper bound on β(A) is

β(A) ≤ σmin(A − ωiI).

It was shown in [14] that a lower bound β(A) is given by

1

2
sep(A) ≤ β(A),

where
sep(A) = min{‖AY + Y AH‖, Y ∈ C

n×n, ‖Y ‖ = 1}

is the separation of A and −AH , where AH denotes the complex conjugate
transpose of A. Clearly, sep(A) = 0 if A has an eigenvalue on the imaginary
axis.

In [4] a bisection method for computing β(A) was introduced. The method
provides lower and upper bounds on β(A) but requires the solution of a sequence
of eigenvalue problems for the 2n × 2n Hamiltonian matrix

H(α) =

[

A −αI

αI −AH

]

(2)

for a positive real α. In [4, Theorem 1] it has been shown that H(α) has a pure
imaginary eigenvalue if and only if α ≥ β(A). It is clear that the eigenvalues
of H(0) are the union of the eigenvalues of A with the eigenvalues of −AH ,
where the latter are the eigenvalues of A mirrored in the imaginary axis. If α

is increased from zero some eigenvalues of H(α) approach the imaginary axis.
Hence, in order to find the distance to instability one needs to find the minimum
value of α such that H(α) has two identical imaginary eigenvalues. This is the
basis of the numerical methods in [4, 7, 2, 3]. The theoretical discussion and
consequent numerical method in this paper also exploit this observation. Under
the key assumption that H(α) has a Jordan block of dimension 2 at the critical
value of α, we derive a stable numerical algorithm to calculate the desired α

and hence the distance to instability.
He & Watson [7] built on the ideas in [4] and used a method based on

inverse iteration for singular values in order to find a stationary point of f(ω) =
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σmin(A−ωiI) and then solved an eigenvalue problem for H(α) in order to check
if this point is a global minimum. Boyd & Balakrishnan [2] and Bruinsma &
Steinbuch [3] proposed a quadratically convergent method for the more general
task of finding the H∞-norm of a transfer function matrix which reduces to
the problem discussed here in the simplest case. This algorithm requires the
computation of all eigenvalues of H(α) at each step.

In this paper we introduce a new algorithm to find the minimum value of α

such that H(α) has a pure imaginary eigenvalue. Our method is based on the
implicit determinant method of [13] but is extended to find the value α such
that H(α)−ωiI has a zero eigenvalue corresponding to a 2-dimensional Jordan
block. Numerical experiments presented here indicate that this method proves
to be significantly faster than the methods discussed in [4, 7, 2, 3].

In Section 2 we present some background theory of Hamiltonian matrices and
describe the extension of the implicit determinant method [13] to the case when
H(α)−ωiI has a 2-dimensional Jordan block. In Section 3 we give a theoretical
analysis of the solution structure of the path det(H(α)−ωiI) = 0 in the (ω, α)-
plane near the critical value of α. In particular we prove that a certain pair of
real nonlinear equations in the two unknowns (ω, α) has an isolated solution at
the critical value of α, which may be computed in a stable way by Newton’s
method. Section 4 contains the details of the numerical implementation of our
method, including an alternative approach using a symmetric system and a
checking step as used in [7]. We also provide a description of and a theoretical
comparison to the methods by Boyd & Balakrishnan [2] and He & Watson [7].
In Section 5 five numerical examples are given to illustrate the theory in this
paper and allow comparison with the methods in [7] and [2].

2. Background theory and the implicit determinant method

In this section we provide some background results on the spectral properties
of H(α) defined by (2), present the main assumption and describe the mathe-
matical approach that is used for both the theoretical development (Sections 3
and 4) and as a numerical tool (Section 5).

In the analysis of Hamiltonian matrices it is standard to introduce the matrix
J , defined by

J =

[

0 In

−In 0

]

, (3)

with In the identity matrix of size n, so that

JH = J−1 = −J, JHJ = I, J2 = −I, and (JH(α))H = JH(α). (4)

Using these properties it is easily shown that, if (λ, x) is a right eigenpair of
H(α), then (−λ̄, (Jx)H) is a left eigenpair of H(α). An immediate consequence
of this last result is that if λ = iω is an imaginary eigenvalue of H(α) defined
by (2) with eigenvector x, then the corresponding left eigenvector is (Jx)H . If
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H(α) has a pure imaginary eigenvalue λ = iω, ω ∈ R and the corresponding

eigenvector x ∈ C2n is partitioned as x =

[

v

u

]

, with v, u ∈ Cn then

(H(α) − ωiI)x = 0 ⇐⇒

[

A −αI

αI −AH

] [

v

u

]

= ωi

[

v

u

]

(5)

⇐⇒ (A − ωiI)v = αu and (A − ωiI)Hu = αv. (6)

Hence, α is a singular value of (A − ωiI) with right and left singular vectors v

and u respectively.
Let α∗ denote the minimum value of α at which H(α) has a pure imaginary

eigenvalue, say ω∗i with corresponding x∗ =

[

v∗

u∗

]

. Hence α∗ = β(A). It is

easy to show from (6) that ‖u‖ = ‖v‖. Also, E := −α∗
u∗v∗H

v∗Hv∗
is the desired

perturbation with ‖E‖ = α∗. Our key assumption is:

Assumption 1. (ω∗i, x∗) is a defective eigenpair of H(α∗) of algebraic multi-
plicity 2.

Thus

(H(α∗) − ω∗iI)x∗ = 0, x∗ 6= 0, and dimker(H(α∗) − ω∗iI) = 1, (7)

and if we denote the left null vector of (H(α∗) − ω∗iI) by y∗ then

y∗H
x∗ = 0. (8)

Also, if x̂∗ denotes a generalised eigenvector of ω∗i satisfying

(H(α∗) − ω∗iI)x̂∗ = x∗, (9)

then Assumption 1 implies that

y∗H
x̂∗ 6= 0. (10)

Our theoretical analysis and numerical method rely on an approach called
the implicit determinant method introduced in [13] which has its roots in an
algorithm due to Griewank and Reddien [6] for bifurcation analysis of nonlinear
parameter dependent problems. We start with the following Theorem about the
nonsingularity of a certain bordered matrix.

Theorem 2. Let Assumption 1 be satisfied and for some c ∈ Cn assume

cHx∗ 6= 0. (11)

Then the (2n + 1) × (2n + 1) complex matrix

M(ω, α) =

[

H(α) − ωiI Jc

cH 0

]

(12)

is nonsingular at ω = ω∗, α = α∗.
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Proof. Using (7), Lemma 2.8 of [10] proves that M(α∗, ω∗) is nonsingular if
cHx∗ 6= 0 and y∗HJc 6= 0. However, y∗ = Jx∗ and JHJ = I, so the second
inequality reduces to the first one which is true by assumption (11).

Since M(α∗, ω∗) is nonsingular then so is M(ω, α) for (ω, α) near (ω∗, α∗).
Let us now consider the following linear system where c ∈ Cn satisfies (11)

and for (ω, α) near (ω∗, α∗),

[

H(α) − ωiI Jc

cH 0

] [

x(ω, α)
f(ω, α)

]

=

[

0
1

]

, (13)

where x and f are smooth functions of ω and α via the Implicit Function
Theorem (cf. [6], [13, equation (26)]).

Using Cramer’s rule we get

f(ω, α) =
det(H(α) − ωiI)

detM(ω, α)
, (14)

and hence, as M(ω, α) is nonsingular in a neighbourhood of (ω∗, α∗), we have

f(ω, α) = 0 ⇐⇒ det(H(α) − ωiI) = 0. (15)

Note also
f(ω, α) = 0 ⇐⇒ x(ω, α) ∈ ker(H(α) − ωiI). (16)

Here we see the main idea of the method, namely to seek solutions of

f(ω, α) = 0 (17)

and hence recover values of α and ω such that H(α) has a pure imaginary
eigenvalue ωi and find the corresponding eigenvector as a byproduct.

It is straightforward to show that f(ω, α) is real: left multiply the first row
of (13) by x(ω, α)HJ to get

f(ω, α) = x(ω, α)HJ(H(α) − ωiI)x(ω, α), (18)

where we have used J2 = −I and x(ω, α)Hc = 1, from the second row of (13),
and the fact that J(H(α)−ωiI) is Hermitian shows that f(ω, α) is real. Equa-
tion (15) describes an important theoretical equivalence, namely, that under
the assumptions of Theorem 2, the zero set of det(H(α) − ωiI) near (ω∗, α∗)
is precisely the zero set of f(ω, α) near (ω∗, α∗), where f is a real function of
two real variables. We shall exploit this equivalence in more detail in the next
section.

We end this section by noting that if Assumption 1 holds then α∗ is a simple
singular value of A − ω∗iI.

5



3. Theoretical analysis of the path det(H(α)−ωiI) = 0 in the (ω, α)-
plane

In this section we use the equivalence given by (15) to give a theoretical
analysis of the structure of the solutions of det(H(α) − iωI) = 0 in the (ω, α)-
plane near (ω∗, α∗). We do this by analysing the path f(ω, α) = 0. We start
with a simple Lemma which has significant consequences.

Lemma 3. Let Assumption 1 be satisfied and assume (11) holds. Consider the
real curve f(ω, α) = 0. Then, near (ω∗, α∗)

fα(ω, α) = ‖x(ω, α)‖2 > 0. (19)

Proof. Differentiate the linear system (13) with respect to α to obtain
[

H(α) − ωiI Jc

cH 0

] [

xα(ω, α)
fα(ω, α)

]

=

[

Jx(ω, α)
0

]

, (20)

where we have used Hα(α) = −J from (2). Multiply the first equation from the
left by (Jx(ω, α))H , the left null vector of H(α) − ωiI, to give

fα(ω, α) = (Jx(ω, α))HJx(ω, α) = ‖Jx(ω, α)‖2 = ‖x(ω, α)‖2 > 0,

where we have used JHJ = I and x(ω, α)Hc = 1.

Hence, under Assumption 1 and (11), and using the result of Lemma 3, the
Implicit Function Theorem shows that near (ω∗, α∗), α = α(ω) and f(ω, α(ω)) =
0. Thus, there is a smooth path of solutions to f(ω, α) = 0 parameterised by ω

in the (ω, α)-plane near (ω∗, α∗).
Next we focus attention on values fω and fωω at the point (ω∗, α∗).

Lemma 4. Let Assumption 1 be satisfied, assume (11) holds and let A in (2)
be a stable matrix. Then

(a) f∗

ω
:= fω(ω∗, α∗) = 0 (21)

(b) f∗

ωω := fωω(ω∗, α∗) < 0. (22)

Proof. (a) Similar to the proof of Lemma 3 we start by differentiating (13) with
respect to ω to obtain

[

H(α) − ωiI Jc

cH 0

] [

xω(ω, α)
fω(ω, α)

]

=

[

ix(ω, α)
0

]

. (23)

Evaluate at (ω∗, α∗), multiply the first row from the left by y∗H = (Jx∗)H

to get
fω(ω∗, α∗) = iy∗H

x(ω∗, α∗) = 0 (24)

using (8). Hence, using (9), the first row of (23) evaluated at (ω∗, α∗) with
(24) gives

x∗

ω
:= xω(ω∗, α∗) = ix̂∗, (25)

so xω(ω∗, α∗) is a generalised eigenvector belonging to ω∗i.
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(b) Differentiate the linear system (23) with respect to ω to obtain
[

H(α) − ωiI Jc

cH 0

] [

xωω(ω, α)
fωω(ω, α)

]

=

[

2ixω(ω, α)
0

]

. (26)

Evaluate at (ω∗, α∗), multiply the first equation on the left by y∗H to get

fωω(ω∗, α∗) = 2iy∗H
xω(ω∗, α∗) = −2y∗H

x̂∗ 6= 0,

using (25) and (10). Hence, using simple calculus it is easy to show that
near (ω∗, α∗), with α∗ = α(ω∗), the Taylor series expansion of α(ω) has the
form

α(ω) = α∗ − (ω − ω∗)2
f∗

ωω

2f∗
α

+ h.o.t.,

so that, recalling (19), there are two possibilities for the solution structure,
depending on the sign of f∗

ωω
(see Figure 1). To prove (22) and hence case

α

ω

ω*

ω
2

ω
1

αα*

f(ω,α)=0

(a) Case f∗

ωω
< 0

α

ω

ω*

α*

f(ω,α)=0

(b) Case f∗

ωω
> 0

Figure 1: Curve f(ω, α) = 0 in the (ω, α)-plane for f∗

ωω < 0 and f∗

ωω > 0

(a) in Figure 1 applies, we use contradiction. Assume f∗

ωω
> 0, so case

(b) in Figure 1 applies. Now, from (19), the curve of f(ω, α) = 0 has
no intersections. Also, since α∗ is the minimum value that f∗

ω
= 0 (that

is where H(α) has a Jordan block with pure imaginary eigenvalues) the
curve f(ω, α) = 0 cannot turn back on itself for α < α∗. The curve is
bounded using the Implicit Function Theorem applied to (13). Hence, the
path f(ω, α) = 0 meets the imaginary axis at α = 0 and so H(0) has pure
imaginary eigenvalues. This contradicts the fact that A is stable. Hence
our assumption that f∗

ωω
> 0 is false.

Lemmata 3 and 4 prove that the solution structure of f(ω, α) = 0, and hence
of det(H(α) − iωI) = 0, is as in Figure 1a. Thus, for α > α∗, there are two
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real values of ω, say ω1 and ω2 as in Figure 1a, that correspond to algebraically
simple eigenvalues of H(α), since fω 6= 0 at these points. For α < α∗ there
are no real solutions. Not surprisingly, this is in complete agreement with the
treatment in [4]. Also, we have shown that, under Assumption 1, when two
algebraically simple pure imaginary eigenvalues of H(α) coalesce at α∗ as α

varies, then they split to form two complex eigenvalues off the imaginary axis.
They do not simply pass through each other and remain on the imaginary axis.
In the terminology of Hamiltonian systems, the two pure imaginary eigenvalues
have opposite signature. However, most useful for the numerical method in this
paper is the discussion in the following paragraph.

In the language of bifurcation theory, if H(α∗) − iω∗I has a 2-dimensional
Jordan block (Assumption 1), then (ω∗, α∗) is a structurally stable quadratic
turning point of f(ω, α) = 0 as in Figure 1a (see also [9, Figure 3.1]). The point
(ω∗, α∗) may be calculated in a stable manner by solving

g(ω, α) =

[

f(ω, α)
fω(ω, α)

]

=

[

0
0

]

, (27)

since the Jacobian of g(ω, α) at the root (ω∗, α∗) is the 2 × 2 matrix

G(ω∗, α∗) =

[

fω(ω∗, α∗) fα(ω∗, α∗)
fωω(ω∗, α∗) fωα(ω∗, α∗)

]

=

[

0 f∗

α

f∗

ωω f∗

ωα

]

, (28)

which is nonsingular by (19) and (22). Note that when solving g(ω, α) = 0 the
variables ω and α are independent variables since they are not restricted to lie
on the curve f(ω, α) = 0. We describe how to solve g(ω, α) = 0 in the next
section.

The equivalence of solutions of f(ω, α) = 0 and solutions of det(H(α) −
iωI) = 0 shows that the calculation of (ω∗, α∗) such that H(α∗) − iω∗I has a
2-dimensional Jordan block is a stable numerical process. The key point here
is that α is allowed to vary, so this result does not contradict the fact that the
computation of a Jordan block of a fixed matrix is an unstable process.

The analysis in this section is in the spirit of that in [8] but is completely
different and leads to a considerably simpler numerical method.

4. The calculation of α∗ = β(A)

The analysis in the previous section shows that the critical values (ω∗, α∗)
such that H(α∗) − iω∗I has a 2-dimensional Jordan block may be calculated
numerically by finding a zero of the two real nonlinear equations in two real
variables given by (27). The analysis also shows that under Assumptions 1 and
(11) (ω∗, α∗) is an isolated zero of g(ω, α). It is natural to compute (ω∗, α∗)
using Newton’s method, and this is what we now explain. One nice feature
of the numerical method is that it mirrors directly the theory of the previous
section.
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4.1. Newton’s method

We now describe Newton’s method to solve g(ω, α) = 0. Newton’s method
with a starting guess (ω(0), α(0)) gives the sequence of linear systems

G(ω(i), α(i))

[

∆ω(i)

∆α(i)

]

= −g(ω(i), α(i)),

[

ω(i+1)

α(i+1)

]

=

[

ω(i)

α(i)

]

+

[

∆ω(i)

∆α(i)

]

,

(29)

for i = 0, 1, 2 . . . until convergence, where the Jacobian is

G(ω(i), α(i)) =

[

fω(ω(i), α(i)) fα(ω(i), α(i))

fωω(ω(i), α(i)) fωα(ω(i), α(i))

]

. (30)

The values of f (i), f
(i)
α , f

(i)
ω and f

(i)
ωω are calculated from (13), (20), (23) and

(26). The value for f
(i)
ωα can be calculated by differentiating (23) with respect

to α, that is

[

H(α) − ωiI Jc

cH 0

] [

xωα(ω, α)
fωα(ω, α)

]

=

[

Jxω(ω, α) + ixα(ω, α)
0

]

. (31)

Hence, in order to calculate g(ω, α) and G(ω, α) given by (27) and (30) we
need to solve the systems (13), (23), (26), (20) and (31) which all use the
same nonsingular system matrix M(ω, α) from (12) and hence, only one LU
factorisation is needed per iteration.

Note that Newton’s method is only carried out in the two-dimensional (ω, α)-
plane, which is intuitively natural since once the two scalars (ω∗, α∗) are calcu-
lated the problem is essentially solved.

Algorithm 1 (Newton’s method). Given (ω(0), α(0)) and c ∈ Cn such that
M(ω(0), α(0)) is nonsingular; set i = 0:

(i) Solve (13) and (23) (using the x(ω(i), α(i)) obtained in (13) for the right
hand side of (23)) in order to find

g(ω(i), α(i)) =

[

f(ω(i), α(i))

fω(ω(i), α(i))

]

,

and x(ω(i), α(i)), xω(ω(i), α(i)).

(ii) Solve (20), (26) and (31) (using xα(ω(i), α(i)) obtained in (20)) in order to
find the Jacobian G(ω(i), α(i)) given by (30).

(iii) Newton update: Solve (29) in order to get (ω(i+1), α(i+1))

(iv) Repeat until convergence.
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The method is well-defined, that is, the Jacobian G(ω(i), α(i)) is nonsingu-
lar for a starting guess that is close enough to the solution, since the matrix
G(ω∗, α∗) given by (28) is nonsingular under Assumption 1 and (11). Conver-
gence is quadratic as seen in the examples in Section 5.

Finally, note that a good choice for c in matrix M(ω(i), α(i)) from (12) which
satisfies assumption (11) is

c ≈ x(ω∗, α∗). (32)

In the numerical examples we take α(0) = 0 and for ω(0) we choose the imaginary
part of the eigenvalue of A which is closest to the imaginary axis. Then we take

c = x(0) =

[

v(ω(0), α(0))

u(ω(0), α(0))

]

,

where v(ω(0), α(0)) and u(ω(0), α(0)) are right and left singular vectors of A −
ω(0)iI.

4.2. Symmetric method

Instead of working with the non-Hermitian system (13),

[

H(α) − ωiI Jc

cH 0

] [

x(ω, α)
f(ω, α)

]

=

[

0
1

]

, (33)

we could work with a Hermitian system. Multiplying (33) by

[

−J 0
0H 1

]

leads

to the Hermitian system
[

−JH(α) + ωiJ c

cH 0

] [

x(ω, α)
f(ω, α)

]

=

[

0
1

]

,

as (JH(α))H = (JH(α)) and JH = −J . Hence, instead of an LU factorisation,
an LDLT transformation could be used when solving the systems within New-
ton’s method. However for our relatively small-scale examples we have not seen
a significant benefit; similar timings are obtained as for the non-Hermitian for-
mulation. Taking the Hermitian form may be beneficial for large-scale problems,
however.

4.3. Testing step

It is possible that the computed α, say αcomp, is actually too large, that
is, there exists a smaller value of α∗ < αcomp such that H(α∗) has two pure
imaginary eigenvalues and for any small value θ the matrix H(α∗ − θ) does
not have any pure imaginary eigenvalue. Therefore we include a checking step
into our algorithm, in order to ensure that the computed αcomp is the smallest
possible α such that H(α) has two imaginary eigenvalues. We use the checking
idea of He & Watson [7].

After convergence of Algorithm 1, that is

|α(i+1) − α(i)| ≤ τ and ‖g(ω(i), α(i))‖ ≤ τ, (34)
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for some tolerance τ , we set αcomp = α(i+1) and check the eigenvalues of
H(αcomp − θ) for some small tolerance θ. If H(αcomp − θ) does not have a
pure imaginary eigenvalue we stop the algorithm and set α∗ = αcomp.

Otherwise, we reduce the value of αcomp using

αcomp := δ · αcomp, δ ∈ (0, 1)

until we find a value of αcomp such that H(αcomp) does not have a pure imaginary
eigenvalue. Then we set α(0) = αcomp and restart Algorithm 1 with (ω(0), α(0)),
where for ω(0) we choose the imaginary part of the eigenvalue of H(α(0)) which
is closest to the imaginary axis.

Note that this checking step is carried out in a similar fashion as in He &
Watson [7] (that is, we use the QR method in order to solve this eigenvalue
problem) and tests if the smallest value of α∗ is found. Our method is very fast
but is not guaranteed to find the minimum value for α at first since it is based
on Newton’s method. However, in all our test problems it did, in fact, find the
desired α∗. An implementation of a hybrid scheme which uses our new method
to provide starting guesses for the algorithm in [2, 3] is a possible extension that
we do not explore here.

4.4. Algorithm complexity

In [2] and [3], a quadratically convergent method for the more general task
of finding the H∞-norm of a transfer function matrix has been proposed. This
can be translated into our framework to give the following algorithm:

Algorithm 2 (Boyd&Balakrishnan). Given A, α ≥ β(A) and a tolerance:

(i) Compute all pure imaginary eigenvalues iw1, . . . , iwl of H(α) given by (2),
ordered so that w1 ≤ w2 ≤ . . . ≤ wl.

(ii) Set sk =
wk + wk+1

2
, k = 1, . . . , l−1 and update α = mink σmin(A− skiI)

(iii) Repeat until convergence.

This algorithm converges quadratically, however, requires the solution of a
2n × 2n eigenvalue problem at each step. Now, the cost of calculating all the
eigenvalues using the QR method is 10(2n)3 = 80n3 flops (see [5, p. 359]). In
this discussion we ignore the cost of step (ii), though if l is large this may be
significant also.

The Newton method we propose also converges quadratically, however, re-
quires a LU factorisation of a (2n + 1) × (2n + 1) matrix at each step, costing
2

3
(2n + 1)3 ≈

16

3
n3 flops (this is a conservative estimate for a full matrix, for

sparse matrices this can be reduced). As a precaution we also implement a test
step as in [7]. This test step which uses an eigenvalue computation requires
80n3 flops.
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Let N1 be the number of Newton steps for our new method, N2 be the
number of test steps and N3 be the number of eigenvalue solves required by the
Boyd&Balakrishnan algorithm. Then our new method is more efficient if

(

16

3
N1 + 80

)

N2 < 80N3.

Due to the quadratic convergence N3 ≈ 6−7. Our algorithm usually takes only
one test step N2 = 1 with a quadratically convergent Newton method, N1 is
always less than 6, and hence is likely to be faster than method of [2]. If we take
N3 = 6 and N1 = 6 (as both algorithms are quadratically convergent), then
this rough heuristic complexity argument suggests the approach in this paper
is likely to outperform the method in [2] unless N2 = 5 test steps are required.

The method in this paper updates estimates of (ω, α) in one step (using
Newton’s method applied to two real nonlinear equations), whereas the methods
in [2, 3] and [7] involve a two stage process: first there is an update in the ω-
direction, then an update in the α-direction. Thus, the method in this paper
has the potential to be faster.

In the next section we present several numerical examples that show the
numerical performance of our method. We also compare iteration numbers and
CPU times of our proposed method with the algorithms in [2, 3] and [7].

5. Numerical examples

We first describe three examples that were used in [7]. In all problems
we apply both the Newton method in order to find the distance to instability
β(A). We use α(0) = 0 and for ω(0) we choose the imaginary part of the
eigenvalue of A which is closest to the imaginary axis. For c in (13) we take

c = x(0) =

[

v(ω(0), α(0))
u(ω(0), α(0))

]

, where v(ω(0), α(0)) and u(ω(0), α(0)) are right and

left singular vectors of A−ω(0)iI. These are obvious choices to make as we are
looking for the value of α closest to zero and it is expected that the value of ω

closest to the imaginary axis is most likely to be a good starting guess for ω∗.
We will see that with those initial guesses for Newton’s method we obtain very
good results for all our examples. All computations were performed in Matlab

Version 7.8.0.347 (R2009a).

Example 5. Consider

A =









−0.4 + 6i 1
1 −0.1 + i 1

1 −1 − 3i 1
1 −5 + i









which has eigenvalues (rounded to 3 significant digits)

Λ(A) = {−0.41 + 5.80i,−0.04 + 0.95i,−0.92− 2.62i,−5.13 + 0.87i}

12



so that A is stable. The imaginary part of the eigenvalue of A which is closest
to the imaginary axis is ω(0) = 0.953057740164838. We stop the computation
once (34) is satisfied, where τ = 10−11. In order to check the eigenvalues of
H(αcomp − θ) we use θ = 10−10.

Table 1: Results for Example 5.

Newton method

i ω(i) α(i) ‖g(ω(i), α(i))‖

0 0.953057740164838 0 -
1 0.953036248966042 0.031887014318100 1.594990002001362e-02
2 0.953014724735990 0.031887009443620 2.257727998248458e-04
3 0.953014724704841 0.031887014303200 2.447309320759901e-09
4 0.953014724704841 0.031887014303200 6.161287176187464e-16

The results for Example 5 are shown in Table 1 and we indeed see very fast
(quadratic) convergence of Newton’s method.

For this simple 4 × 4 example the computation times for Newton method,
the Boyd & Balakrishnan algorithm and the method proposed by He & Watson
are very small and not reported here.

Example 6. Let A be the matrix bwm200.mtx from the matrix market library
[1]. It is the discretised Jacobian of the Brusselator wave mode for a chemical
reaction. The dimension of this matrix is 200, with 796 nonzero elements.
The 32 rightmost eigenvalues, which are all in the left half plane are shown
in Figure 2. The initial guess (ω(0), α(0)) and the value for c is as discussed

−50 −40 −30 −20 −10 0
−5

−4

−3

−2

−1

0

1

2

3

4

5
Rightmost eigenvalues of the Brusselator matrix

Figure 2: Rightmost eigenvalues of the Brusselator matrix in Example 6.

in the first paragraph of this section. The eigenvalue of A which is closest
to the imaginary axis is −0.000018199876628± 2.139497522076030i and hence
ω(0) = 2.139497522076030. We stop the computation once (34) is satisfied,
where τ = 10−10. In order to check the eigenvalues of H(αcomp − θ) we use
θ = 10−14.

13



Table 2: Results for Example 6.

Newton method

i ω(i) α(i) ‖g(ω(i), α(i))‖

0 2.139497522076343 0 -
1 2.139497522045502 0.000008240971700 4.191183100020208e-06
2 2.139497522014727 0.000008240971687 3.828424651364583e-07
3 2.139497522014739 0.000008240971689 1.624908978281682e-10
4 2.139497522014746 0.000008240971691 8.163859421299612e-11

Table 2 shows the results for Example 6 and we observe fast convergence of
Newton’s method.

Table 3 shows the computation times for this example. The iterations and
CPU times in the first row refer to the ones of the algorithm used by Boyd
& Balakrishnan [2] (see also Bruinsma & Steinbuch [3]) and the ones in the
second row refer to the ones of the algorithm used by He & Watson [7]. We
have reimplemented the methods of He & Watson and Boyd & Balakrishnan
in a newer version of Matlab in order to make the results comparable to our
computation times. The algorithm in He & Watson delivers a lower and upper

Table 3: CPU times for Example 6.

CPU times
Algorithm Iterations CPU Test Test steps without

times steps times test steps

Boyd/Balakrishnan 6 31.85 s − − −
He/Watson 92 2.37 s 1 − 2 0.63 s 1.73 s

Newton 4 1.43 s 1 0.47 s 0.96 s

bound on α. We have carried out several tests for each of the three methods
in order to obtain average CPU times. Based on the times in Table 3, for this
example, Newton’s method is faster than the method proposed in [2] and the
performance of our algorithm is comparable to the performance of the method
in [7], although, in general, slightly faster.

Example 7. Consider the Orr-Sommerfeld operator

1

γR
L2v − i(UL − U ′′)v = λLv, where L =

d2

dx2
− γ2 and U = 1 − x2.

Discretising the operator on v ∈ [−1, 1] using finite differences (see [7] for details)
yields a generalised eigenproblem

Bnun = λnLnun

and with γ = 1, R = 1000 and n = 1000 we obtain a standard eigenvalue prob-
lem Anun = L−1

n
Bnun = λnun and the spectrum of A1000 is plotted in Figure 3.
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Figure 3: Eigenvalues of the Orr-Sommerfeld matrix in Example 7.

The eigenvalue of A1000 closest to the imaginary axis is −0.033552884928942−
0.193436725413768i, and so we choose ω(0) = −0.193436725413768. We stop
the computation once (34) is satisfied, where τ = 10−10 and in order to check
the eigenvalues of H(αcomp − θ) we use θ = 10−6.

Table 4: Results for Example 7.

Newton method

i ω(i) α(i) ‖g(ω(i), α(i))‖

0 -0.193436725409075 0 -
1 -0.195968902440330 0.001984096006025 5.512849722200156e-03
2 -0.199587128435624 0.001967128516845 3.151734196608377e-03
3 -0.199755034853323 0.001978156503348 1.142239611083313e-04
4 -0.199755999429793 0.001978172281285 7.372625327573070e-07
5 -0.199755999447160 0.001978172281961 1.253426205668754e-11

Table 5: CPU times for Example 7.

CPU times
Algorithm Iterations CPU Test Test steps without

times steps times test steps

Boyd/Balakrishnan 5 406.92 s − − −
He/Watson 1785 249.00 s 1 10.51 s 238.49 s

Newton 5 15.92 s 1 10.44 s 5.48 s

Table 4 shows the convergence and Table 5 the computation times for Exam-
ple 7. Clearly, in terms of iteration numbers and computing time our algorithm
outperforms the method by Boyd & Balakrishnan and He & Watson. The
method by Boyd & Balakrishnan does not require a test step, however, New-
ton’s method only requires one test step and is overall much faster than the
other two methods.
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The final two examples are different from the ones in [7], nevertheless we
still compare the performance of our method with the ones in [2, 3] and [7].

Example 8. Consider the matrix tols340.mtx from the matrix market li-
brary [1]. It arises in aeroelasticity and is a highly nonnormal matrix of di-
mension 340, with 2196 nonzero entries. The eigenvalues which are all on the
left half plane are shown in Figure 4. The eigenvalue closest to the imagi-
nary axis is −0.156000000000045 + 155.9999219999807i, so we choose ω(0) =
155.9999219999807. We stop the computation once (34) is satisfied, where
τ = 10−12 and in order to check the eigenvalues of H(αcomp−θ) we use θ = 10−6.

−10
3

−10
2

−10
1

−10
0

−10
−1

−500

−400

−300

−200

−100

0

100

200

300

400

500
Rightmost eigenvalues of the Tolosa  matrix

Figure 4: Eigenvalues of the Tolosa matrix in Example 8.

Table 6: Results for Example 8.

Newton method

i ω(i) α(i) ‖g(ω(i), α(i))‖

0 155.9999219999809 0 -
1 155.9998829972845 0.0019997968879 9.999037055532748e-04
2 155.9998439945399 0.0019997968254 1.602513548769279e-06
3 155.9998439945282 0.0019997968879 3.125412339698120e-11
4 155.9998439945282 0.0019997968879 3.801367746908066e-16

Table 7: CPU times for Example 8.

CPU times
Algorithm Iterations CPU Test Test steps without

times steps times test steps

Boyd/Balakrishnan 4 90.55 s − − −
He/Watson > 33000 > 2248 s > 11 > 18 s > 2230 s

Newton 4 3.62 s 1 1.70 s 1.92 s
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Table 6 and 7 show the results for Example 8. The last column in Table 6
shows the quadratic convergence of Newton’s method. The He & Watson algo-
rithm is very slow for this example and we also found that it gives unreliable re-
sults (for the iteration number given in the table we obtained 0.002347235693050
for the lower bound and 0.002348235693050 for the upper bound). Moreover,
the CPU times for our new algorithm are much smaller than the ones for the
Boyd & Balakrishnan or the He & Watson method.

Example 9. In this example we consider the matrix rdb450.mtx from the
matrix market library [1]. Similarly to Example 6 it comes from a reaction-
diffusion Brusselator model. It is of dimension 450 and has 2580 nonzero entries.
Its eigenvalues, which are all on the left half plane, are plotted in 5. We choose
ω(0) = 1.610747974050455 as the eigenvalue closest to the imaginary axis is
−0.247220948810185+1.610747974050455i. We stop the computation once (34)
is satisfied, where τ = 10−10 and in order to check the eigenvalues of H(αcomp−
θ) we use θ = 10−12.
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Figure 5: Eigenvalues of the Brusselator model matrix in Example 9.

Table 8: Results for Example 9.

Newton method

i ω(i) α(i) ‖g(ω(i), α(i))‖

0 1.610747974050403 0 -
1 1.602450963999748 0.084279716628557 4.377644240662334e-02
2 1.593940375957182 0.084228092288813 5.815770068107961e-03
3 1.593892581595785 0.084277383410081 3.800213113694599e-05
4 1.593892567251320 0.084277384643143 9.629615041218073e-09
5 1.593892567251319 0.084277384643143 1.027150511281111e-15

The results for Example 9 are given in Tables 8 and 9. From Table 8 we
see that Newton method converges quadratically. Table 9 shows that Newton’s
method outperforms both the Boyd & Balakrishnan and the He & Watson
algorithm with respect to computation time. With respect to iteration numbers
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Table 9: CPU times for Example 9.

CPU times
Algorithm Iterations CPU Test Test steps without

times steps times test steps

Boyd/Balakrishnan 4 549.92 s − − −
He/Watson 169 45.57 s 4 − 6 19.41 s 26.16 s

Newton 5 8.58 s 1 3.80 s 4.78 s

the Boyd & Balakrisnan and our method are comparable, however, our iterations
are faster, as we essentially only carry out Newton’s method for a real function
in two real variables.

One iteration of the He & Watson method is often quicker than one step
of our method, as the size of the matrices used in their algorithm is smaller.
However, we need many fewer iterations as Newton’s method in (ω, α) space
converges quadratically.

6. Conclusion

We have given an new algorithm for computing the distance of a stable
matrix to the nearest unstable one. Numerical results show that this algorithm
is competitive with and in almost all cases outperforms earlier algorithms. Our
method is very quick, however, is not guaranteed to find the minimum value for
α at first (although it does so in all our test problems). For that reason we use
it in conjuction with a checking step as in [7].

Acknowledgements

The authors would like to thank two anonymous referees for their valuable
comments which improved the paper considerably.

References

[1] B. Boisvert, R. Pozo, K. Remington, B. Miller,

and R. Lipman, Matrix market. available online at
http://math.nist.gov/MatrixMarket/.

[2] S. Boyd and V. Balakrishnan, A regularity result for the singular values
of a transfer matrix and a quadratically convergent algorithm for computing
its L∞-norm, Systems Control Lett., 15 (1990), pp. 1–7.

[3] N. A. Bruinsma and M. Steinbuch, A fast algorithm to compute the
H∞-norm of a transfer function matrix, Systems Control Lett., 14 (1990),
pp. 287–293.

18



[4] R. Byers, A bisection method for measuring the distance of a stable matrix
to the unstable matrices, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 875–
881.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations, John Hopkins
University Press, Baltimore, 3rd ed., 1996.

[6] A. Griewank and G. W. Reddien, Characterization and computation of
generalized turning points, SIAM J. Numer. Anal., 21 (1984), pp. 176–185.

[7] C. He and G. A. Watson, An algorithm for computing the distance to
instability, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 101–116.

[8] A. Ilchmann and B. Werner, Characterization of the stability radius
via bifurcation techniques, Appl. Anal., 52 (1994), pp. 231–245.

[9] A. D. Jepson and A. Spence, The numerical solution of nonlinear equa-
tions having several parameters. I. Scalar equations, SIAM J. Numer. Anal.,
22 (1985), pp. 736–759.

[10] H. B. Keller, Numerical solution of bifurcation and nonlinear eigenvalue
problems, in Applications of Bifurcation Theory, P. H. Rabinowitz, ed.,
Academic Press, New York, 1977, pp. 359–384.

[11] W. Kerner, Large-scale complex eigenvalue problems, J. Comput. Phys.,
85 (1989), pp. 1–85.

[12] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Halsted
Press, New York, 1992.

[13] A. Spence and C. Poulton, Photonic band structure calculations using
nonlinear eigenvalue techniques, J. Comput. Phys., 204 (2005), pp. 65–81.

[14] C. F. Van Loan, How near is a stable matrix to an unstable matrix?, in
Linear algebra and its role in systems theory (Brunswick, Maine, 1984),
vol. 47 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1985,
pp. 465–478.

19


