Rainer Hempel TU Braunschweig

Surface states associated with large scale defects in solid matter.

Abstract. We consider a simple quantum mechanical model in \mathbb{R}^2 for a grain boundary in a crystal or an alloy. Here the potential V = V(x, y) is derived from two periodic potentials V_1 and V_2 on \mathbb{R}^2 by setting $V(x, y) := V_1(x, y)$, for x > 0, and $V(x, y) := V_2(x, y)$, for x < 0. We assume that there is a (non-trivial) interval (a, b) which is free of spectrum of the periodic Schrödinger operators $H_1 = -\Delta + V_1$ and $H_2 = -\Delta + V_2$, both acting in $L_2(\mathbb{R}^2)$. We are then interested in the spectrum of $H = -\Delta + V$ inside (a, b). Special attention is given to the cases where V_2 is obtained from V_1 by a translation or by a rotation. We also study related problems on an infinite strip $\mathbb{R} \times (0, 1) \subset \mathbb{R}^2$ where the potentials V_1 and V_2 are not necessarily assumed to be periodic.

This is joint work with M. Kohlmann, M. Stautz, and J. Voigt.