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THE FOX-LI OPERATOR

Fuh)@) = [ e i@y, e (-11),

where w > 0O;:

e F, is a complex-valued, symmetric linear operator in L2(—1,1). Itis
compact, therefore o (F,,) consists of the origin and at most a countable
number of eigenvalues accumulating at the origin.

e It spectrum o(F,) is important in laser and maser engineering: the eigen-
functions represent modes (self-reproducing field distributions) between
two semi-circular reflectors placed at a fixed distance from each other.

e Computational results indicate that o(F,) lies on a spiral commencing
near /7 /wel™/* and rotating clockwise to the origin. Not much is known
of the precise shape of this spiral.
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Fox—Li eigenvalues for w = 100 and w = 200.



FOX-LI SINGULAR VALUES

Singular values s(F,,) are the positive square roots of the the eigenvalues of
the positive semidefinite operator 7. They are of an independent interest,

e.g. in random matrix theory.
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Fox—Li singular values, approximated as eigenvalues of a (2N + 1) x (2N + 1) matrix.

We observe that almost all singular values accumulate at just two points: the origin and

something which suspiciously looks like /7 /w.



WIENER-HOPF OPERATORS

The Fourier—Plancharel transform F : L2(R) — L2(R):

FO=ENE©:= [ °:O F(Hetds, ¢ eR.

Few definitions:
Multiplication: M(a) : f— af;
Convolution: C(a): fr— F_lM(a)Ff;
Projection: P, orthogonally projects LQ(R) — LQ(O, 00),
P, orthogonally projects L2(0, 00) — L?(0,7):

Wiener—Hopf operator: W(a) := P+C(a)|L2(O, 00),
Wr(a) := PrW(a)|L?(0, 7).



In particular, if a = &, k € L1(R) U L2(R) then

(C®N@ =] ka—pf@)dy,

WEN@ = [~ k@ —y)f ) dy.
(We(® @)= [ k(z = y)J () dy.
Set
40, (&) = [ jwel™/ eI/ (4w) R
= (Cla)N@ = [ D f(y)dy

0@

Theorem (Hartman & Wintner) If a € L°°(RR) is real-valued then
oc(W(a)) = convR(a), where R(a) is the essential range of a.

Theorem (Bottcher & Widom) If a € L°°(R) is real-valued then

oc(Wr(a)) Co(W(a)), T >0,
and o (W-(a)) =3 (W (a)) in the Hausdorff matrix.



Therefore, for real-valued a € L°°(R), oc(W+(a)) C convR(a), 7 > 0, and
o(Wr(a)) —= R(a) in the Hausdorff metric.

Theorem Unless R(a) is a singleton, if a € L°°(R) is real-valued then an
endpoint of the line segment R (a) cannot be an eigenvalue of W, (a).

The Szeg§ First Limit Theorem If a € L°°(R) N L1(R) is real-valued and
¢ € C(RR) afunction s.t. o(x)/x has a finite limit for x — 0 then (W (a)) is
a trace class operator forall 7 > 0, ¢ 0 a € L}(R) and

i, A - L™ otagen) ae

700 T s

Theorem (A continuous analogue of Widom and Tilli) Leta € C(R) N L1(R),
where R is the one-point compactification of R, suppose that R(a) has no
interior points and o(W (a)) = R(a). Then oc(W+-(a)) — R(a) in the Haus-
dorff metric and, for ¢ € C(C) s.t. lim,_qw(2)/z is finite, p o a € L1(R)
and

i Tre(Wr(a)) _

T—00 T

7 ea©) de.



o(W+(a)) being trace class, it is true that

tro(Wr(a)) = Z ©(N;),

jeo(Wr(a))
where the sum is at most countable.

The function a relevant to Fox—Li is not real-valued. However, real-valuedness
can be dropped once we pass from eigenvalues to singular values, i.e. replace

Theorem (Avram & Parter) Leta € L®°(R) N LY (R) and ¢ € C[0, c0), s.t.
lim,_.o¢(z)/x is finite. Then ¢(|W-(a)]) is trace class, p o a € L1(R) and

im, PN L o aco) ae.
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HIGHLY OSCILLATORY CONVOLUTION-TYPE PROBLEMS

The Fox—Li operator F,, is a convolution operator. Serendipitously, F,,F; IS
unitarily equivalent to a convolution operator:

Lemma Let
ViL2(=1,1) — L2(~1,1), (V)(z):=e 9" f(z).
(Note that V' is unitary.) Then

(VRFV Py = [ SN2 2w

1 w(z—v) f(y) dy, re(—1,1).

The general context:
Ifa € L°(R) N L1(R) thena € L2(R), hence 3k € L?(R) s.t. a = k. Since
k € L1(R), we know that & is continuous and k(+o0) = 0. Set

ko(t) := k(wt), teR, w>0
and compress the convolution operator C'(k,) to L2(—1, 1),

(C1yEIN@) = [ 11 kw(z—y)fy)dy, e (~1,1).



We have just proved that F,,F is unitarily equivalent to

Cooqpy(kw)  with k() = Smizt)-
Thus,
N oo siNn(?2 :
a© =k =/ _ S'”i Vet dt = mx(_p (),

where x , 3y is the characteristic function of (a, B).

Let U be the unitary operator s.t.

U:L°(-1,1) — L%(0,7), (U () 1= \Ef(zt_T),

-
Because

U*: L2(0,7) — L2(=1,1), (U*g)(z) = %g(T(x;_ 1>> ,

we deduce by direct computation that

. 2
UC’(_]_’]_)(kw)U — ;WT(kQQJ/T)'
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Theorem Provided that a € L (R) N L1(R) is real-valued, then

wo (C_1,1y(kw)) C convR(k), wo (C_1,1)(kw)) “25° conv R(k)

in the Hausdorff metric. Moreover, if p € C(R) and lim,_,g ¢(x)/x is finite
then

o treleyyke) _ 1 /_oo S(R(E)) e

The proof follows by letting = = 2w, observing that

wo(C(_1 1y (Fw)) = o (Way,(R))

and using theorems that we have quoted earlier.

We are now in a position to prove two theorems that describe fairly comprehensively the

structure of s(F,,) for the Fox—Li operator.
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Theorem A s(F,) C [0, /7/w), w > 0.

Theorem B As w — oo, the sets ws?(F,) converge in the Hausdorff metric
to the line segment [0, w]. Moreover, for each ¢ € (0, 7/2),

|w52(fw) M (7T o 577T) :470} _I_ O(W)a

|w52(.7-"w) N(e,m—¢e)|=o0o(w),
ws?(Fu) N (0,e)| = oo,

where | E| is the number of points of E, counting multiplicities.

Proofs of Theorems A & B The operator wF,F} = wC(_Ll)(lE) IS unitarily
equivalent to

2 -
WZWQw(k) — WQw(T"X(—Q’Q))-

Hence ws?(F,) C conv R(WX(_Q,Q)) = [0, «] for all w > O and converges
to [0, ] in the Hausdorff metric for w — co. Moreover 7 ¢ ws?(F,), oth-
erwise it would be an eigenvalue of WQw(ﬂ'X(_Q,Q)), a contradiction. This
proves Theorem A and first part of Theorem B.
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To complete the proof, let 0 < o < g < 7 and choose

e, € C(R) st o(z)=¢v(x) =0, —oo<zxz<a/2,

and o(x) < X(a,8) < Ww(x), x € [0,7]. Let N(ap) i= lws2(F,) N (a, B)],
then

N(aﬁ) — trx(a,ﬁ)(WQw(ﬂ'X(_Q,Q))).
Since X (a.B) < 1),
N tr o (W (mx

wW— 00 2w W_>OO 2w

1
= 7 v o @) de = o [ wmyde = Zum),
likewise
lim inf N(Q‘i‘f) > %go(w).

For (o, ) = (m — e, m) we choose ¢, s.t. (7)) = (7)) = 1, therefore
N,
(m— 67‘(‘)

w—oo 2w s

= N(w—g ) — 4_&) -+ o(w).
’ T

13



Likewise, for (o, 3) = (e, m — ¢) we take o(7) = (7)) = 0 and deduce that
N(en—e) = o(w).

Finally, since the endpoint of conv R(a) isn’'t an eigenvalue, sz(wx(_272))
IS injective, hence so is wF,F. Therefore wF,F} has dense, thus infinite-
dimensional range. We deduce that ws?(F,) N (0, ) is an infinite set. But
only 4w/m + o(w) of its points live in [e,7) and so infinitely many do so in
(0,¢e). O

Note that, for any o < 3, 0 € [«, 3], one obtains similarly that

mes [{€€R : k() =a}U{EeR : k(&) =p} =0

o gim WOk N Bl Lmes{e R : K(©) € (a.0)}.

Remarkably, we have all these results because of high oscillation. It is an oft-repeated lesson:
once you understand high oscillation mathematically, it is not a barrier to understanding, it is

a friend!
14



EXAMPLES

o k(t) =et°

Now a (&) =k (&) =+/me /4 hence wC(_1.1)(k) C [0, /), fills it densely
for w — oo and the number of elgenvalues of C( 1 1)(k) in (a/w,B/w) is

“mes{e € R : a < re /% < 8) + o(w).

1 — cost

® L(t) = >

Now a (&) = k(&) = n(1 — £]) 4+, a(wC( 1,1) (kw)) fills [0, ] densely and,
for0 < a < B < 7, the number of elgenvalues of Ci_1 1)(1%) in (a/w, B/w)
IS

w + o(w).

%mes {€ a<n(l—¢Dy <B}+o(w) = 2(57: )
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ON THE IMPORTANCE OF BEING L1(R)

The Fox-Li kernel k(t) = e/’ is not L1(RR), and this is the source of our
problems! Once k € L1(R), life becomes simple:

Theorem If k € L1(R), k(t) = k(—t) and R (k) has no interior points, then
wo(C(_1 1)(kw)) converges to R(k) in the Hausdorff metric and, for every
¢ € C(C) such that lim,_,g ¢(z)/z is finite, p 0 a € L1 (R) and

im - Y e =5 [ pk)de

)\60’(0(_171)(7{\‘&)))

Theorem Let k € L*(R). Then ws(C(_1 1y(kw)) C R(|k|) and converges
to it in the Hausdorff metricas w — oo. If o € C([0,00)) and lim,_,g p(z)/x
is finite then o o k € L1(R) and

: 1 [0 ~
imo— Y e =2 (R
Aes(C_1 1y (kw))

16



EXAMPLE: Attenuated Fox—L.i.

Let k(t) = e(i—=9)t% for & > 0:

(FW,é"f)(w) .= /11 e(i_g)W(x_y)zf(y) dya S (_17 1)

Since

_ (e + 1) e€? &
k(§) = \/ 1 4 &2 eXp <_4(1 -+ 52)> eXp<—|4(1 + 62)> |

R (k) is a spiral, rotating clockwise from ”fi";) to the origin. Thus, for w — oo,
Vwo (Fu.e) converges to the spiral

{”<€+ Do+ ;¢ > o}.
14 &2 -
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w =100

Spectra of F,, . fore =

% and different values of w, as well as the spiral .
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SPECULATING ON THE FOX-LI SPECTRUM

ATTEMPT 1. Wiener—Hopf operators

Although F,, is unitarily equivalent to

%Wm@ with — a(€) = /el 4e 1E/4,

our theory is inapplicable because a ¢ C'(R) N L1 (R). Consider instead
@) 1= X _aypaum e’ € LHR) N LA(R).
Since E%(t} = E[w](\@t) — X(_272)(t)eim2, we deduce that

Fw — C(—l,l) (EEC/U]J) .
From this it is possible to deduce that

Vo (Fu) = o(Wo, 5 (0)).

The problem is that the right-hand side depends upon w in two different ways.

19



It is possible to show that o (W, (71“])) is asymptotically distributed along
R (7%]) for w — oco. The snag is that our + = 2+/w depends upon w.

Let us assume (wrongly!) that for w > 1 we can replace convolution over
(0,2+/w) by one over (0, c0). This leads to the ‘conclusion’ that

o (Fu) ~ (1/Vw)R@W).

The spirals (1/1/w)R(Z¥]).
20



ATTEMPT 2: Toeplitz operators

Fix w > 0 and discretize F,, at 2N + 1 equidistant points in [—1,1]. This
approximates the spectral problem by the algebraic eigenvalue problem

B[N]f[N] — A[N]f[N],
where

iwn? /N2
BVl .= (U‘EJXL)%:_N with quLN] = © N is Toepliz.

Given v € L1(T) with the Fourier coefficients
1

T on

we denote by T'(v) and T (v) the infinite Toeplitz matrix (vj_k)j’kEZJr and

21 i im0
/O v(e'")e " dg, n € 7,

Un .

finite matrix B! = T (v[V]) resp., where in our case

,U[N](e|9) _ Z UkN]elnH — = Z alwn /N aint

21



Since Fox—Li is compact, o (T (vIVD)) — o (F.), but since both the dimen-
sion and the generating function vary with /N, we have no theoretical tools to
predict the limit of o (T (v[])). We may again abandon rigour and replace

(T WY)) =~ o(TVY) = WV = o(F) = oV I(T).

The spirals v[N(T) for N = 500.
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The Wiener—Hopf and Toeplitz attempts are equally wrong:

. 2N . 2 . .
,U[N](ele) :i Z elan/NQGI\/Eﬁn/N — / elwa:Qel\/Eﬁaz dz 4+ O(1/N)
N ="onN —2
_ 2Vw 2 ey _ 1 a0
_%/_Qﬁe e dt +0(1/N) = - IH(©) + 0(1/N),

Moreover, using asymptotic analysis,

ol gy — VT erf(2v=iw + 5v=ig) + erf(2v—iw — Sv/=i¢)]

2+ —iw
therefore
— L2 biw [ o—2i/wE Di/wé
Al & Vire 4s e e e O(w~2):
40> ¢ Q, Ve Vo \avo—e Vavore)TOW™
diw [ a—2iwE Di/wé
avm<lel: () ~ 'eﬁ (54@—5‘14@) +0(72).

This explains the two regimes visible in the figures: extended rotation with roughly equal
amplitude, followed by attenuation.
23



ATTEMPT 3: Theta-three

Compare

N, o2 1 X iw /N2

vVl = — 1142 3" gf cos(2ak)|, gy =N, oy =1,
k=1

oo
2
O3(alg):=1+2 Y ¢ cos(2ak), qcC, |q <1.
k=1

What makes v!M! stay nice, in spite of |gn| = 1, is the presence of the 1/N factor.

63 blows up for |¢| = 1. Instead, let's take

dN,w — (1 o \/\i/f]Q)CINa 1> |QN,w| =1+ O(l/N2>

and plot

93(0‘|QN,w)

N for N>1, «a€[—n/2,7/2].

24
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Attenuated theta spirals, superimposed on the spectra.

What is the explanation of this remarkable fit, at least near the ‘head’ of the spiral? We have
no idea.
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