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THE FOX–LI OPERATOR

(Fωf)(x) :=
∫ 1

−1
eiω(x−y)2f(y) dy, x ∈ (−1,1),

where ω > 0:

• Fω is a complex-valued, symmetric linear operator in L2(−1,1). It is
compact, therefore σ(Fω) consists of the origin and at most a countable
number of eigenvalues accumulating at the origin.

• It spectrum σ(Fω) is important in laser and maser engineering: the eigen-
functions represent modes (self-reproducing field distributions) between
two semi-circular reflectors placed at a fixed distance from each other.

• Computational results indicate that σ(Fω) lies on a spiral commencing
near

√

π/ωeiπ/4 and rotating clockwise to the origin. Not much is known
of the precise shape of this spiral.
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Fox–Li eigenvalues for ω = 100 and ω = 200.
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FOX–LI SINGULAR VALUES
Singular values s(Fω) are the positive square roots of the the eigenvalues of
the positive semidefinite operator F∗

ωF . They are of an independent interest,
e.g. in random matrix theory.
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Fox–Li singular values, approximated as eigenvalues of a (2N + 1) × (2N + 1) matrix.

We observe that almost all singular values accumulate at just two points: the origin and

something which suspiciously looks like
√

π/ω.
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WIENER–HOPF OPERATORS

The Fourier–Plancharel transform F : L2(R) → L2(R):

f̂(ξ) = (Ff)(ξ) :=
∫ ∞

−∞
f(t)eiξt dt, ξ ∈ R.

Few definitions:

Multiplication: M(a) : f 7→ af ;

Convolution: C(a) : f 7→ F−1M(a)Ff ;

Projection: P+ orthogonally projects L2(R) → L2(0,∞),

Pτ orthogonally projects L2(0,∞) → L2(0, τ);

Wiener–Hopf operator: W (a) := P+C(a)|L2(0,∞),

Wτ(a) := PτW (a)|L2(0, τ).
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In particular, if a = k̂, k ∈ L1(R) ∪ L2(R) then

(C(k̂)f)(x)=
∫ ∞

−∞
k(x− y)f(y) dy,

(W (k̂)f)(x)=
∫ ∞

0
k(x− y)f(y) dy,

(Wτ(k̂)f)(x)=
∫ τ

0
k(x− y)f(y) dy.

Set

aω(ξ) :=
√

π/ωeiπ/4e−iξ2/(4ω), ξ ∈ R

⇒ (C(aω)f)(x) =
∫ ∞

−∞
eiω(x−y)2f(y) dy.

Theorem (Hartman & Wintner) If a ∈ L∞(R) is real-valued then
σ(W (a)) = convR(a), where R(a) is the essential range of a.

Theorem (Böttcher & Widom) If a ∈ L∞(R) is real-valued then

σ(Wτ(a)) ⊂ σ(W (a)), τ > 0,

and σ(Wτ(a))
τ→∞−→ σ(W (a)) in the Hausdorff matrix.
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Therefore, for real-valued a ∈ L∞(R), σ(Wτ(a)) ⊂ convR(a), τ > 0, and
σ(Wτ(a))

τ→∞−→ R(a) in the Hausdorff metric.

Theorem Unless R(a) is a singleton, if a ∈ L∞(R) is real-valued then an
endpoint of the line segment R(a) cannot be an eigenvalue of Wτ(a).

The Szegő First Limit Theorem If a ∈ L∞(R) ∩ L1(R) is real-valued and
ϕ ∈ C(R) a function s.t. ϕ(x)/x has a finite limit for x→ 0 then ϕ(Wτ(a)) is
a trace class operator for all τ > 0, ϕ ◦ a ∈ L1(R) and

lim
τ→∞

trϕ(Wτ(a))

τ
=

1

2π

∫ ∞

−∞
ϕ(a(ξ)) dξ.

Theorem (A continuous analogue of Widom and Tilli) Let a ∈ C(Ṙ) ∩ L1(R),
where Ṙ is the one-point compactification of R, suppose that R(a) has no
interior points and σ(W (a)) = R(a). Then σ(Wτ(a)) → R(a) in the Haus-
dorff metric and, for ϕ ∈ C(C) s.t. limz→0ϕ(z)/z is finite, ϕ ◦ a ∈ L1(R)

and

lim
τ→∞

trϕ(Wτ(a))

τ
=

1

2π

∫ ∞

−∞
ϕ(a(ξ)) dξ.
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ϕ(Wτ(a)) being trace class, it is true that

trϕ(Wτ(a)) =
∑

j∈σ(Wτ(a))

ϕ(λj),

where the sum is at most countable.

The function a relevant to Fox–Li is not real-valued. However, real-valuedness
can be dropped once we pass from eigenvalues to singular values, i.e. replace
Wτ(a) with |Wτ(a)| := (Wτ(a)Wτ(a)∗)1/2:

Theorem (Avram & Parter) Let a ∈ L∞(R) ∩ L1(R) and ϕ ∈ C[0,∞), s.t.
limx→0ϕ(x)/x is finite. Then ϕ(|Wτ(a)|) is trace class, ϕ ◦ a ∈ L1(R) and

lim
τ→∞

trϕ(|Wτ(a)|)
τ

=
1

2π

∫ ∞

−∞
ϕ(|a(ξ)|) dξ.
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HIGHLY OSCILLATORY CONVOLUTION-TYPE PROBLEMS

The Fox–Li operator Fω is a convolution operator. Serendipitously, FωF∗
ω is

unitarily equivalent to a convolution operator:

Lemma Let

V : L2(−1,1) → L2(−1,1), (V f)(x) := e−iωx2f(x).

(Note that V is unitary.) Then

(V FωF∗
ωV

∗f)(x) =
∫ 1

−1

sin(2ω(x− y))

ω(x− y)
f(y) dy, x ∈ (−1,1).

The general context:
If a ∈ L∞(R) ∩ L1(R) then a ∈ L2(R), hence ∃k ∈ L2(R) s.t. a = k̂. Since
k̂ ∈ L1(R), we know that k is continuous and k(±∞) = 0. Set

kω(t) := k(ωt), t ∈ R, ω > 0

and compress the convolution operator C(k̂ω) to L2(−1,1),

(C(−1,1)(k̂ω)f)(x) :=
∫ 1

−1
k(ω(x− y))f(y) dy, x ∈ (−1,1).
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We have just proved that FωF∗
ω is unitarily equivalent to

C(−1,1)(k̂ω) with k(t) =
sin(2t)

t
.

Thus,

a(ξ) = k̂(ξ) =
∫ ∞

−∞
sin(2t)

t
eiξt dt = πχ(−2,2)(ξ),

where χ(α,β) is the characteristic function of (α, β).

Let U be the unitary operator s.t.

U : L2(−1,1) → L2(0, τ), (Uf)(t) :=

√

2

τ
f

(

2t− τ

τ

)

,

Because

U∗ : L2(0, τ) → L2(−1,1), (U∗g)(x) =

√

τ

2
g

(

τ(x+ 1)

2

)

,

we deduce by direct computation that

UC(−1,1)(k̂ω)U
∗ =

2

τ
Wτ(k̂2ω/τ).
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Theorem Provided that a ∈ L∞(R) ∩ L1(R) is real-valued, then

ωσ(C(−1,1)(k̂ω)) ⊂ convR(k̂), ωσ(C(−1,1)(k̂ω))
ω→∞−→ convR(k̂)

in the Hausdorff metric. Moreover, if ϕ ∈ C(R) and limx→0ϕ(x)/x is finite
then

lim
ω→∞

trϕ(ωC(−1,1)(k̂ω))

2ω
=

1

2π

∫ ∞

−∞
ϕ(k̂(ξ)) dξ.

The proof follows by letting τ = 2ω, observing that

ωσ(C(−1,1)(k̂ω)) = σ(W2ω(k̂))

and using theorems that we have quoted earlier.

We are now in a position to prove two theorems that describe fairly comprehensively the

structure of s(Fω) for the Fox–Li operator.
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Theorem A s(Fω) ⊂ [0,
√

π/ω), ω > 0.

Theorem B As ω → ∞, the sets ωs2(Fω) converge in the Hausdorff metric
to the line segment [0, π]. Moreover, for each ε ∈ (0, π/2),

|ωs2(Fω) ∩ (π − ε, π)|=4ω

π
+ o(ω),

|ωs2(Fω) ∩ (ε, π − ε)|=o(ω),

|ωs2(Fω) ∩ (0, ε)|=∞,

where |E| is the number of points of E, counting multiplicities.

Proofs of Theorems A & B The operator ωFωF∗
ω = ωC(−1,1)(k̂) is unitarily

equivalent to

ω
2

2ω
W2ω(k̂) = W2ω(πχ(−2,2)).

Hence ωs2(Fω) ⊂ convR(πχ(−2,2)) = [0, π] for all ω > 0 and converges
to [0, π] in the Hausdorff metric for ω → ∞. Moreover π 6∈ ωs2(Fω), oth-
erwise it would be an eigenvalue of W2ω(πχ(−2,2)), a contradiction. This
proves Theorem A and first part of Theorem B.
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To complete the proof, let 0 < α < β ≤ π and choose

ϕ,ψ ∈ C(R) s.t. ϕ(x) = ψ(x) = 0, −∞ < x < α/2,

and ϕ(x) ≤ χ(α,β) ≤ ψ(x), x ∈ [0, π]. Let N(α,β) := |ωs2(Fω) ∩ (α, β)|,
then

N(α,β) = trχ(α,β)(W2ω(πχ(−2,2))).

Since χ(α,β) ≤ ψ,

lim sup
ω→∞

N(α,β)

2ω
≤ lim
ω→∞

trψ(W2ω(πχ(−2,2)))

2ω

=
1

2π

∫ ∞

−∞
ψ(πχ(−2,2)(ξ)) dξ =

1

2π

∫ 2

−2
ψ(π) dξ =

2

π
ψ(π),

likewise

lim inf
ω→∞

N(α,β)

2ω
≥ 2

π
ϕ(π).

For (α, β) = (π − ε, π) we choose ϕ,ψ s.t. ϕ(π) = ψ(π) = 1, therefore

lim
ω→∞

N(π−ε,π)
2ω

=
2

π
⇒ N(π−ε,π) =

4ω

π
+ o(ω).
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Likewise, for (α, β) = (ε, π − ε) we take ϕ(π) = ψ(π) = 0 and deduce that
N(ε,π−ε) = o(ω).

Finally, since the endpoint of convR(a) isn’t an eigenvalue, W2ω(πχ(−2,2))

is injective, hence so is ωFωF∗
ω. Therefore ωFωF∗

ω has dense, thus infinite-
dimensional range. We deduce that ωs2(Fω) ∩ (0, π) is an infinite set. But
only 4ω/π+ o(ω) of its points live in [ε, π) and so infinitely many do so in
(0, ε). 2

Note that, for any α < β, 0 6∈ [α, β], one obtains similarly that

mes
[

{ξ ∈ R : k̂(ξ) = α} ∪ {ξ ∈ R : k̂(ξ) = β}
]

= 0

⇒ lim
ω→∞

|σ(ωC(−1,1)(k̂ω)) ∩ (α, β)|
2ω

=
1

2π
mes {ξ ∈ R : k̂(ξ) ∈ (α, β)}.

Remarkably, we have all these results because of high oscillation. It is an oft-repeated lesson:

once you understand high oscillation mathematically, it is not a barrier to understanding, it is

a friend!
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EXAMPLES

• k(t) = e−t
2

Now a(ξ)= k̂(ξ)=
√
πe−ξ

2/4, hence ωC(−1,1)(k̂) ⊂ [0,
√
π), fills it densely

for ω → ∞ and the number of eigenvalues of C(−1,1)(k̂) in (α/ω, β/ω) is

ω

π
mes {ξ ∈ R : α <

√
πe−ξ

2/4 < β} + o(ω).

• k(t) =
1 − cos t

t2

Now a(ξ) = k̂(ξ) = π(1 − |ξ|)+, σ(ωC(−1,1)(k̂ω)) fills [0, π] densely and,
for 0 < α < β ≤ π, the number of eigenvalues of C(−1,1)(k̂ω) in (α/ω, β/ω)

is

ω

π
mes {ξ : α < π(1 − |ξ|)+ < β} + o(ω) =

2(β − α)

π2
ω+ o(ω).
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ON THE IMPORTANCE OF BEING L1(R)

The Fox–Li kernel k(t) = eit2 is not L1(R), and this is the source of our
problems! Once k ∈ L1(R), life becomes simple:

Theorem If k ∈ L1(R), k(t) = k(−t) and R(k̂) has no interior points, then
ωσ(C(−1,1)(k̂ω)) converges to R(k̂) in the Hausdorff metric and, for every
ϕ ∈ C(C) such that limz→0ϕ(z)/z is finite, ϕ ◦ a ∈ L1(R) and

lim
ω→∞

1

2ω

∑

λ∈σ(C(−1,1)(k̂ω))

ϕ(ωλ) =
1

2π

∫ ∞

−∞
ϕ(k̂(ξ)) dξ.

Theorem Let k ∈ L1(R). Then ωs(C(−1,1)(k̂ω)) ⊂ R(|k̂|) and converges
to it in the Hausdorff metric as ω → ∞. If ϕ ∈ C([0,∞)) and limx→0ϕ(x)/x

is finite then ϕ ◦ k̂ ∈ L1(R) and

lim
ω→∞

1

2ω

∑

λ∈s(C(−1,1)(k̂ω))

ϕ(ωλ) =
1

2π

∫ ∞

−∞
ϕ(|k̂|) dξ.
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EXAMPLE: Attenuated Fox–Li.

Let k(t) = e(i−ε)t2 for ε > 0:

(Fω,εf)(x) :=
∫ 1

−1
e(i−ε)ω(x−y)2f(y) dy, x ∈ (−1,1).

Since

k̂(ξ) =

√

π(ε+ i)

1 + ε2
exp

(

− εξ2

4(1 + ε2)

)

exp

(

−i
ξ2

4(1 + ε2)

)

,

R(k̂) is a spiral, rotating clockwise from π(ε+i)
1+ε2

to the origin. Thus, for ω → ∞,
√
ωσ(Fω,ε) converges to the spiral

{

π(ε+ i)

1 + ε2
e−(i+ε)t : t ≥ 0

}

.
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SPECULATING ON THE FOX–LI SPECTRUM
ATTEMPT 1: Wiener–Hopf operators

Although Fω is unitarily equivalent to

1√
ω
W2

√
ω(a) with a(ξ) =

√
πeiπ/4e−iξ2/4,

our theory is inapplicable because a 6∈ C(Ṙ) ∩ L1(R). Consider instead

ℓ[ω](t) := χ(−2
√
ω,2

√
ω)(t)e

it2 ∈ L1(R) ∩ L2(R).

Since ℓ[ω]√
ω
(t) := ℓ[ω](

√
ωt) = χ(−2,2)(t)e

iωt2, we deduce that

Fω = C(−1,1)

(

ℓ
[ω]√
ω

)

.

From this it is possible to deduce that
√
ωσ(Fω) = σ(W2

√
ω(ℓ̂

[ω])).

The problem is that the right-hand side depends upon ω in two different ways.
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It is possible to show that σ(Wτ(ℓ̂[ω])) is asymptotically distributed along
R(ℓ̂[ω]) for ω → ∞. The snag is that our τ = 2

√
ω depends upon ω.

Let us assume (wrongly!) that for ω ≫ 1 we can replace convolution over
(0,2

√
ω) by one over (0,∞). This leads to the ‘conclusion’ that

σ(Fω) ≈ (1/
√
ω)R(ℓ̂[ω]).

The spirals (1/
√
ω)R(ℓ̂[ω]).
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ATTEMPT 2: Toeplitz operators

Fix ω > 0 and discretize Fω at 2N + 1 equidistant points in [−1,1]. This
approximates the spectral problem by the algebraic eigenvalue problem

B[N ]f [N ] = λ[N ]f [N ],

where

B[N ] := (v
[N ]
j−k)

N
j,k=−N with v

[N ]
n :=

eiωn2/N2

N
is Toepliz.

Given v ∈ L1(T) with the Fourier coefficients

vn :=
1

2π

∫ 2π

0
v(eiθ)e−inθ dθ, n ∈ Z,

we denote by T (v) and TN(v) the infinite Toeplitz matrix (vj−k)j,k∈Z+
and

finite matrix B[N ] = TN(v[N ]) resp., where in our case

v[N ](eiθ) =
2N
∑

n=−2N

v
[N ]
n einθ =

1

N

2N
∑

n=−2N

eiωn2/N2
einθ.
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Since Fox–Li is compact, σ(TN(v[N ])) → σ(Fω), but since both the dimen-
sion and the generating function vary with N , we have no theoretical tools to
predict the limit of σ(TN(v[N ])). We may again abandon rigour and replace

σ(TN(v[N ])) ≈ σ(T (v[N ])) = v[N ](T) ⇒ σ(Fω) ≈ v[N ](T).

The spirals v[N ](T) for N = 500.
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The Wiener–Hopf and Toeplitz attempts are equally wrong:

v[N ](eiθ)=
1

N

2N
∑

n=−2N

eiωn2/N2
ei
√
ωξn/N =

∫ 2

−2
eiωx2ei

√
ωξx dx+O(1/N)

=
1√
ω

∫ 2
√
ω

−2
√
ω
eit2eiξt dt+O(1/N) =

1√
ω
ℓ̂[ω](ξ) +O(1/N).

Moreover, using asymptotic analysis,

ℓ̂[ω](ξ) =

√
πe−iξ2/4

2
√
−iω

[

erf
(

2
√
−iω+ 1

2

√
−iξ

)

+ erf
(

2
√
−iω − 1

2

√
−iξ

)]

therefore

4
√
ω> |ξ| : ℓ̂[ω](ξ) ≈

√
iπe−

1
4iξ

2

√
ω

− ie4iω

√
ω





e−2i
√
ωξ

4
√
ω−ξ +

e2i
√
ωξ

4
√
ω+ξ



+O(ω−2);

4
√
ω< |ξ| : ℓ̂[ω](ξ) ≈ ie4iω

√
ω





e−2i
√
ωξ

ξ − 4
√
ω
− e2i

√
ωξ

ξ+ 4
√
ω



+O(ξ−2).

This explains the two regimes visible in the figures: extended rotation with roughly equal

amplitude, followed by attenuation.
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ATTEMPT 3: Theta-three

Compare

v[N ](e2iα) =
1

N



1 + 2
2N
∑

k=1

qk
2

n cos(2αk)



 , qN = eiω/N2
, |qN | = 1,

θ3(α|q) :=1 + 2
∞
∑

k=1

qk
2
cos(2αk), q ∈ C, |q| < 1.

What makes v[N ] stay nice, in spite of |qN | = 1, is the presence of the 1/N factor.

θ3 blows up for |q| = 1. Instead, let’s take

qN,ω =

(

1 −
√
ω√

2N2

)

qN , 1 > |qN,ω| = 1 +O(1/N2)

and plot

θ3(α|qN,ω)
N

for N ≫ 1, α ∈ [−π/2, π/2].
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Attenuated theta spirals, superimposed on the spectra.

What is the explanation of this remarkable fit, at least near the ‘head’ of the spiral? We have

no idea.
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