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Abstract

These lectures are intended to introduce the Semi Classical
Approximation and some of its intricacies in a consistent and
transparent way. The main topics to be covered are

The semi classical approximation for the quantum evolution operator.
Uniform approximations

Semi-classical spectral theory:

The trace formula and some of its applications. (For systems in 1-d)

It is hoped that the ideas and tools presented here will provide a
solid jumping-board for further studies and applications.

"Putting quantum flesh on classical bones” (W.H. Miller)



Mormierter Interferenzkontrast

Motivation (For Physicists)
The correspondence principle in action!

A two slits experiment with heavy molecules

Probing the limits of the quantum world
M. Arndt, K. Hornberger, and A. Zeilinger,
Physics World (March 2005) 35-40

a) The buckyball carbon-70;
b) The pancake-shaped biomolecule tetraphenylporphyrin (TPP) C,,H3,N,;
c) The fluorinated fullerene Cg,F,5. (atomic mass of 1632 units )
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http://physicsweb.org/articles/world/18/3/5/1

Motivation (For Mathematicians)

1. Singular perturbation theory:

The Schroedinger equation:

2. Oscillatory integrals
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Preliminaries: Classical vs Quantum evolution

x Classical Evolution:

m dq

L(q,él;t)=5<'12—V(q,t) . qcR! 4=

1
H(p,q,t) = %P2+V(q,t) . peR/

* Quantum Evolution operator (propagator) K(q"t";q't") V t”" >t :

h? 5,
(_%Aq” _|_ V(q”,t//)) K(q”t”;q/t/) — ith(q//t//;q/t/)
K(q//t//;q,t,> — O fOI' t” < t, 7 hm K(q//t//;q,t,) — 5(q// L q/)

t//lt/
l:[j(q//,t//) — /dq/K(q//t//;q/t/)\lj(q/,t/)

The transition-probability density is P(q"t"”;q't’") = |K(q"t";q't’ )\2

Composition (semigroup property) V t” > t >t :

K(q//t//,q/t/) — /qu(q/,t,l,q t) K(q t,q/t,>



Unitarity :
/dq/K(q//t//;q/t/) K*(q///t//;q/t/) — 5<q/// _q//)
Spectral decomposition for time independent H

K(q"t";q't') =(q" | e n"= 1q' ) = > (@) (a)em 70T

Free propagation:

m i m | _
Kpree(q't";q't") = (2M@T) esT T . T=t -+t

Exercise 1:

a. Check by substitution that Kr...(q”t";q't") satisfies the time dependent
Schrodinger equation for a free particle in f dimensions.
b. Prove that limy ¢ Krree(q"t";q't") = 0(q" — d').




_ Richard P. Feynman and Albert R. Hibbs,
Feynman Path Integral representation Quantum Mechanics and Path Integrals

The Democracy of Paths: (McGraw-Hill, New York, 1965).

K(q"t";q't) /D | exp [ %1 :

q(t) a piecewise C! path in config. space from q’ at ¢’ to q” at t”":
/

q(t'’) = q and q(t") = q".
S[q()] the action functional: S[q(t)] = [ dtL(q(t),q(t) ;1).
A | |
q” Z
,,f;:/'~7i7'_f\ "Nt
q’ : |

v



To define the integral, Feynman proposes the limit:

S [(;L(t)]]

— lim K[N](q”t”;q/t')

N—o0

K@@'t qt) = [ Dla@) exp [

00 N 1 N . é
K[N](q”t";qt / exp [ Sl ][ - qN]] : ALLN] _ (QWZTLT>

A[N]

where,

N
T m|q, —q,
S[N] [qO N - N Z [ T/N)21 -V ((qn—l + qn)/2> ;v 9o = q/ y AN = q//

The A%N] are fixed so that for V' = 0 one recovers the explicitely known expres-
sion for the free propagator.
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The semi-classical approximation consists of evaluating the path integral in the
Saddle Point Approximation (SPA).

to leading order in A when h — 0
If f(x) has a single real stationary point f'(xg) = 0,
write f(z) = f(zo) + 3" (z0)(x — z0)? and approximate:

1
oo 17 2 . P

 f(zg) f! (zg) (@—xq) . f(zq) 2mih
I(h)~e" 7 / e' 2R de = €' % ( )

— o0

iM—i£u< 2mih )
= e h 2 J
[f" (o)

where v = 1(0) when (f"(x¢) is negative (positive).

When there are several stationary points and if they are well separated, I(h) is
the sum of their contributions.

For more details see e.g., Morse and Feshbach p437.

(][



Back to the propagator and the path integral

S t
q(t) a piecewise C! path in config. space from q’ at ¢’ to q” at t"":
q(t’) — ¢ and q(t”) = q".

S[q(#)] the action functional: S[q(t)] = [ dtL(q(t),q(t) ;).



The Scl.Approx. is the leading term in the limit 7~ — 0. The main contribution
comes from the vicinity of the paths where the phase is stationary: §5|q(t)] =0
with the restriction: dq(t’) = 0q(t”) = 0.

5S[q(t)] _ [jn dt <8L[q, q; t] . 5q + (9L[q,.('1; t] . 5(1)

, oq 0q
v (0Lla, &t d OL[q.a;t) oLla, &t . 1"
_ dt s S 7. ) L 5q + 7. s
/t/ ( dq dt 0q ) 1 [ q q] ¢
t oV [q; 1] d . ) £
= —/t/ dt(f?—q + am(o‘(sq—"[mQ'&l]t' = 0.

The saddle-point path is the classical trajectory which satisfies the Euler-
Lagrange equation (Newton’s second law):

OLla,&t] _d OLldw,duit] _  _ V(@) .
J0q dt 04, 0qy !

1

subject to the boundary conditions: q.(t') = q', q. (") = q".

Note: The boundary conditions do not determine a classical path uniquely! (examples
below) However, there is no conflict with the uncertainty principle: the path is not
prescribed by the simultaneous values of the position and the momentum.



Example: Several trajectories which satisfy the same boundary conditions.

V(q)

A

\ 4

A
N\

Y

4

E — %Q(t/)2 + V(q/) _______________________________________________________________________ >

AlA

q’ q” q

T If U-U>T . direct transition becomes classically forbidden

v



Some properties of classical trajectories

9L(q.q.t)
oq

2. The classical trajectory is uniquely defined in terms of 2 X f initial condi-
tions at t': q (') = q’, p,(t") = p’ or similarly by final conditions at t"”. We
define it here in terms of 2 x f boundary values q (') = q', q4(t") = q".
They do not guarantee existance or uniqueness.

iii. The classical action is a function of the boundary (or initial) conditions

which define the classical trajectory.

1. Phase space vs configuration space: p = = mq

8501((1/, q”) /t” dt (aL[qcla (.Icl; t] ) 8qcl + 8L[qcl7 qcl; t] ) aqcl)
t

oq’ / 0q,; oq’ 04, oq’
— /t/l dt 8L[qa C.la t] o d_ aL[q7 C.L t] .8qcl (t) + 8L[qcl7 (.lcl; t] ) 8qcl (t) '
4 oq dt  0q g od oq oq" |,
oq,(t" oq,(t'
= pa() ) )P - () =
Similarly
9Sa(d’,q" 9q, (t" oq (1’
(‘gq// ) = Pa(t’) 8i1(// ) a(t) (9(%1<// ) p(t") = p”

1. The above is a proof that the classical dynamics can be thought of as a
canonical transformation with the action S.;(q’.q”) as the generating function.



Now that we have identified the classical trajectory (trajectories) as the saddle
points we should compute the pre-exponential factor in the SPA for the path-
integral. An elegant way to do this is offered if the path integral is defined in a

different way.

The path expansion representation of the path integral



The path expansion method: q(t) =&(t) + >, anu,(t)
o £(t) A reference path with £(t') = q' ; £€(t") = "
o {u,(t)}>2; : A complete orthonormal basis
[2 At () U (£) = G and un () = u,(t') =0VYn € N
e {a,}>°, : path expansion coefficients a,, € R

The N’th approximant to the path integral:

n=1
L N
2 da SINI(g: ay an)
K[N] Myl J4l\ m // “8n » Wl )
(q t 7qt) (27‘(‘27’1(#/ t’)) nl;[l An eXp |7 )
. 1" 41\2 %
For f=1: A, = 2mih(t" —t')

m(mn)?

2mih(t" — t’)2) 2

Ingeneral : n=f(k—1)4+j, 1<j<f; An:( m(rk)?

K(q"t";q’t’) _ /D[q(t)] exp {Zs[%(t)]w :]\;Ean[N](q//t//;q/t/)



Exercise 2:
a. Prove that the path expansion representation for K is independent of the
choice of the reference path.

b. Consider f = 1. Choose £(t) = L= (t—t')+¢' and u, (t) = /% sin Z2=t)

t”—t/ - (t//_t/ t//—t/
Prove by direct integration that the path expansion expression for a free particle
coincides with the exact expression given in a previous page.




The Semi-classical Approximation.

To use the path expansion method, we have to choose:

1. The reference path. 2. The orthonormal basis for the expansion.

The natural choice for the reference path is the classical path, being the path
about which the action is stationary.

§t) =au(t) < Slaat)]=0. 5 au()=d, qu(t") =q"
Expanding: S[qa + 6q(t)] = S[gu] + 30%S + ---, the expansion basis will be
chosen to simplify §28.

T (VI | d
dS[a(t)] = — /t’ dt ( 9q + qu) - 0q
Y (9PV(ay(t);t) d
2¢Q cl ’ v )
58 = /t, dt ( % oq(t) + mdtéq) dq(t)

" t):t — 0°1 q, t
’ J l qcl (t)

The operator
: d?
A(t) — _m@ o V”(qcl (t)7t) 3 t e [t/at”]

plays an essential role in the following, and it deserves a proper introduction.



Stability of classical orbits.
A classical trajectory q,(t) is a solution of the equation of motion:

oV (q)

0q =0

mq +

Subject to the initial conditions at ', namely q,(t') = q,,, and §,(t') = q,,.
A near-bye trajectory satisfies:

. . oVi(aq, +dq;t
(e +06) + SHILEILD

to 1st order :
mdéq + V"'(au(t)t) da = A(t) oq =0.

The sensitivity of the trajectory to small changes in the initial j’th position:
yW(t) = 0q(t)/dq;(t') is a solution of the stability equation subject to the initial
condition y,i] )(t’ ) =0k ; y(t') = 0. Similarly, the sensitivity of the trajectory to
small changes in the initial j’th velocity: z\9)(t) = dq(t)/d¢;(t') is a solution of
the stability equation subject to the initial condition Z,(j) (") = dp; 29 () =0.
The combined set of 2f independent solutions of the stability equation provide
all the information about the (linear) stability of the trajectory. The solutions
are some times referred to as the “Jacobi fields”.



[t is convenient to generalize slightly the definition of the stability operator (and
change its sign):
d2

At;a) = —mog — oV (qy(t);t) ; telt't"]

(v interpolates between free motion (o = 0) and the problem of interest (a =
1)).

Some properties of A(t;a) :

i. A(t; ) is of Sturm -Liouville (Schrédinger) type. Its eigenfunctions define a
natural orthonormal basis, inherent to the problem at hand:

A(t; @)u, (t; ) = A\, (a)u,(t; a) with boundary conditions u,,(t') = u,(t") =0.

7. Wronskian relation: Let y() and y® be two solutions of the stability
equation. Then,
y() .5,(2) _ 5,(1) .y = const .



172. Free motion:

2
Ai,j(t;Oé:O) :51' ; d

Denote by e) the f dimensional unit vector pointing at the j direction. n=
f(k-1)+j

. 2 .t =t rk \
u,(t,a=0) = e(J)\/m Smﬁkt”—t’ ; )\n(a:O):m(t,,_t,> :

The Jacobi fields for the free motion are

y(j)(t) = (t—t) .el) Z(j)(t) — o)
. As long as V" (q,;(t);t) is finite in the interval [t',¢"],
For n — oo : (Ap(a) — Ay (0)) — const

v. Only a finite number of the A\,(«) are negative. For any « the spectrum
become positive if the time interval [t',t”] is sufficiently small.



Exercise 3:

a. Consider the perturbation of a classical trajectory induced by a small vari-
ation in the potential, and show that it satisfies an inhomogeneous equation of
the type Ay = w(t).

b. For simplicity assume f=1. Express the perturbation of the trajectory in
terms of the independent solutions of the homogeneous stability equation. (To
get bonus points: generalize to any f).




Back to the evolution operator:
Using the eigenfunctions u,(t, 1) as a basis, q(t) = q(t) + > — anu,(t; 1).

1 )
Slq(t);a1,a9, -] =~ Slqy] 5 Z . — an immense simplification!

f
2 = da, S(&ar,ag,---)
K(d't" ot) = m o Uln y A1, A2,
(@"t";q't’) (277@'7’3(75”—15’) / /H A exp [2 > ]

n=1
T [8a,]] S [ ' d
~ m 2 AL Py L 2 &
~ <2m'h(t”—t’)) SPTTR nl;[l/_w explop Anll) an] 2

N[~

m Slaa)] T (270 \F ae (An)

_ c 17 sgn(An An
(2m’h(t”—t’)> R nr:[l (\)\n(l)] ¢ /

£ S OO

finally : K, (q"t";q't") = ( : m )) exp [z [qd]] etz

e " [(xm) |

n=1

v is the number of negative \,(1). This is the|Maslov index |of the classical
trajectory. Because of v. above the infinite product converges. Its value can
be derived from the following theorem:




Theorem (Levit, Smilansky)
Let y9)(¢, @) be the Jacobi fields: A(t;a)yY)(t;a) =0,
subject to the initial conditions y/)(#;a) =0 ; y(j)(t’; o) =el)

Then:
e Aw(0) _ detfy”(":0)]
n=1 )\, ( ) det[ (J)(t//.l)]
(J

2. v = the number of times det|y, )(t; 1)] changes its sign in (', t").

We can now collect all the results prepared above, (and remember that the
momentum p conjugate to q is just p = mq) to get the final expression for the
semiclassical propagator:

f
1 2 exp 1 (Scl 7Tz/cl)
Ksc ”t"’ /t/ _ h 2
l(q 4 ) 27T’Lh zl: aqj (t”) %

The summation is over all the classical trajectories which satisfy the boundary
conditions q(t') = q’ ; q(t”) = q"'). This expression was first derived by Van
Vleck, and we shall dedicate the rest of this lecture to interpret and explain it.

Classical bones: dynamics (trajectory), action, stability
Quantum flesh : transition amplitude, interference, the quantum scale: —




Comments and interpretation

1. The semi-classical transition probability:.

|K(q"t";q't")|? is the probability to a make a transition from the quantum
state localized at ' to a state localized at q” at the time (¢ —t'). Classically,
the transition determines a certain value of the initial momentum p’. Denote
by (5q;-, (5p;. the position and momentum uncertainties of an initial state centered
at the initial phase space point. It is assumed that the 5q§ are small so the
initial state is well localized. Note: a quantum state occupies a phase space of
volume wvol(dq)vol(6p) = (2wh)/. The classical dynamics maps the initial 2f
dimensional parallelepiped to another parallelepiped centered at the final phase
space point q”, p”’. The probability to start in a volume differential d/¢’ about
q’ and end in a volume differential d/¢” about q” is

dfq/ dfq//
P //t//‘ /t/ df /df " __ .
(@7t F)d g d g vol(0q") vol(6q")

However,
8q(t//)
vol(8q") = |det =2 vol(dp') .
( ) 0pkz(t/) o ( )
Thus,
_ ag; (")
P, Ht//; WY — (97h f det 29
{aea ) = B Opk(t') | 4
‘Kscl(q//t//;q/t/)|2 _ chl(q//t//;q/t/) 42 Z |PclP_l|% Cos(ﬁ _ EAI/)
cl 14l ¢ h 2

In the limit 7 — 0 the interference terms vanish (in the week sense).



1 5q”

Classical transition probability

q(t”; p)

P p’ P’



4. Unitarity of the semi-classical evolution operator. (f=1 for simplicity)
To be consistent: all integrals must be performed in the SPA.

—// /

1 /e[%(Scz(q”,q’)—Scz(q q")

)_

2

s
2

(v—p)]

I(qlqu//) = /dq/KSCl(q//tl/;q/t/) :Cl(g”t”;q,t,) — dq

27Th 8q(t”) 8q(t//)
Op(t’) Op(t’)

Saddle point condition: %g:/’q/) = %gil’q/) hence: p'(¢") = p’(¢”), implying

the trajectories coincide and ¢” = ¢”. Since most of the contribution is in the
neighborhood ¢’ ~ ¢’ write for the action difference in the exponent %(q’ F—

q//)‘

L SR
I(d". &) ~ dd’
(@ T)~ 5 / I a0
Ip(t’)
1 82Sl(q/ q,/) 8p,, 1 WAy
= — c ) _ I(d".d") ~ — d//ﬁp(q—q)zcs "
e 9q' 0q" og 1T ™ g [de (4

iii. The semi classical propagator has the semi-group property (Composition),
if the intermediate integration is carried out by the SPA. The proof is left as an
exercise.

Exercise 4:(Difficult)
Prove that the semi-classical propagator satisfies (semi-classically) the compo-

sition rule. Prove by performing the integral over the intermediate coordinate
by the SPA)

=

2

q//) )



o0g; (t") | _ . .
3pjk(t,) L 0. At focal points, classical

trajectories which satisfy the same boundary conditions coalesce.

The semi-classical approximation diverges at such points. The loci of focal
points are the caustics (From Greek ”"kaustos” = burnt). The quantum transi-
tion probability is enhanced but does not diverge at caustics. One has to use
a uniform semi-classical theory to describe the phenomenon - this goes beyond
the present course.

Example A particle in an inverse square potential :

1. Focal points are the points where det

1 2 [2
La,#) = 5 — ) == -

2

The trajectory: (zo(t;2’,3"))? = (t &' +2')* +* (L) 5 (' =0).

The initial conditions uniquely define a classical trajectory.

The boundary conditions can be satisfied by either two trajectories or none:

. 1 [
! = Z (x/ + \/x//2t2(5)2>

. ! . /
Caustics : % — (0 hence 2’ = —2- and therefore ! = t%.




7/ V,*0
2 o [y v
s N/ p ) 9,0
n m d i Ay
]
g nf O Ny
Qix~fmf , [e) 9
lv‘ " 7 E"’ %
. SNy 4 =
= A
/
caustics

Classical irajectories
with different initial

velocities

Classically forbidden domain




Example: The evolution operator for the harmonic oscillator

L:%(-z_wzqz)

Class. traj. (determined uniquely by bound conditions except at 7' = Tn):

" _q coswT
qu(q",q';T) = ¢ cos wt + d .q sin wt
sin wT’
q" — ¢ coswT

ch(q//,q/;T) =W —q’ sin wt + cos wt

sinwT’

S, (q//, q/; T) _ mw [COS wT(q”2 4+ q/2) _ zq/q//]

2sinwT’

Class. traj. (determined uniquely by the initial conditions except at 7' = T n):

sin wt
qu(qd',q;T) = ¢ coswt + ¢

The stability operator

A= m(—@ —w?) ; Spectrum A, =m ((%)2 — w2)
An(w =0 T 1 inwl’
H )\w(w) ) = H (1 — (%)2 ﬁ) = Slz; (last step due to Euler)
n wt
y(t) = e ; y(t;w=0)=1t ; Caustics at t = T,

w w



harmonic oscillator cont.

1 mw \ 3 mw
KSC //T; /0 — ( ) . |: T 112 /2 . 2 ! 1! :|
l(q q ) 2mih \sin w7 CApt 2h sin WT (cosw (q ta ) 149 )

Exercise 4:

a. Discuss the Caustics in this system.

b. Check in the text books that the semi classical approximation reconstructs
the exact result. Explain why.

c. Prove that

e—0

lim K (¢", T = gn +¢64q,0)=40(¢" — (-1)"q¢) .

End of section |
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A THEOREM ON INFINITE PRODUCTS OF EIGENVALUES
OF STURM-LIOUVILLE TYPE OPERATORS

S. LEVIT AND U. SMILANSKY
ABSTRACT. Infinite products of ratios of eigenvalues of Sturm-Liouville
operators are expressed in a closed form in terms of corresponding solutions

of initial-value problems.

Introduction. Gaussian path integrals are defined by

M 1= plielee[is[i]]
where
@ [i(0] = [ G - A0 d

and 7(¢) are the N dimensional paths satisfying the end conditons 7(0) =
7(T) = 0. A(¢) is a differential operator of second order in (d/dt) acting on
the space of paths. Such path integrals are often encountered in physical
problems, e.g. the formulation of quantum mechanics [1].

The integral (1) can be evaluated in terms of the infinite product of the
eigenvalues of A(7) [2], [3]. In this note we present a theorem which enables
one to express these infinite products in a closed form.

The theorem will be presented with a detailed proof for the simple case of a
one dimensional problem (N = 1). The extension to N > 1 will be for-
mulated but a detailed proof will not be supplied since it follows the same
lines as for N = 1.

THEOREM 1. Let the differential operator
3 A(as; 1) = (d/dt)(p(2)d/dt) + ag(1)
be defined for 0 < t < T, 0 < « < 1, where p(t) and q(t) are smooth functions
of t,p(1) > py > 0.

Let N (a) and U®(«; t) be the eigenvalues and eigenfunctions for the
boundary-calue problem
@) A(a: YU (a; 1) + Ma)U(a; 1) = 0, U(a; 0)= U(a; T)=0.

Let y(a; t) be the solution of the initial-value problem

Received by the editors January 20, 1976.
AMS (MOS) subject classifications (1970). Primary 34B25: Secondary 34E10.
Key words and phrases. Products of eigenvalues of Sturm-Liouville operators.
© American Mathematical Society 1977
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(5) Ala; Hy(a; 1) =0, y(a;0)=0, (d/di)y(a;0)=1.
Then, for every a
@ A (a) y(ea; T)
(©) g
,q-].;'[l A (0) »(0:;T)

Proor. The following points should be observed:
(a) For all k, A,(0) > 0 and for large k,

A (0) =| =

T dt
/

f" Vr(r)

(b) The functions A, (@), U*(a; 1) and y(a; f) are analytic in « [5].

(c) For large &, |Ay(a) — A (0)] € a - M [4] with M independent of a or k.
Hence the product on the left-hand side of (6) converges uniformly for all
finite values of a.

(d) There is a finite number of nonpositive eigenvalues for a given « [6].
Hence the product on the left-hand side of (6) vanishes only at a finite
number of « values, in the interval 0 € a < 1.

A necessary and sufficient condition for y(«; T) to vanish is that one of the
A, (@) vanishes. Hence the two sides of equation (6) vanish simultaneously.

Consider now the functions:

C I W)
() = 2
I@=1 36
(®) f (@) =y(a; T)/y(0; T).
Since by construction f(0) = f(0) = 1, the theorem will be proved once it is

demonstrated that (d/da) f(«)/f(e) = (d/da)f(a)/f(a), for all a satisfying
Sf(e) # 0.

By virtue of (c) one can differentiate the left-hand side of equation (7) as if
it were a finite product and get

d _ 3 d\ (@) 1
)] E f(a]/f(a) - k%[ dot P\k(rx} '
It can easily be shown that
dA
(10) ((l‘) _ __f [U('U(d f) I} dr,

where U ®)(a; 1) are the solutions of (4) subject to the normalization

(1) fur (VD@ ) ar = 1.
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Since the integral in (10) is bounded by Max|q(7)| and because of (c), .the
series on the right-hand side of (9) converges uniformly and the summation
and integration operations could be interchanged to yield

(12) 4 f(@)/f(a) = [ Groo(t, 1. )q(0) d
do 0 A
with
) @ U(“(a; I)U“‘){m; !') /
(13) G\ (1,1, ) =E. N @ P>

which is the spectral representation of Green’s function for the boundary-
value problem (4).

Returning to the initial value problem (5) and differentiating it with respect
to a, one gets that z(a; 1) = dy(a; 1)/da is a solution of the initial-value
problem
(14)  A(a; )z(a; 1) = —q(0)y(a; 1), z(a;0) =0, (d/dr)z(a;0)=0.

The solution of (14) is expressed in terms of the solution y (a; #) of (5) and
the solution y(a; t) of the adjoint problem
(15) A )F(a;0) =0, §(a; T) =0, (d/d)j(a;T)= L.

Applying the method of variation of the parameters, one can prove that the
solution of (14) is given by

z(as 1) = [y(a;f)'[:y(a; 1) 7 (a; 1')g(1) dt’

(16)
=V (o f)f(:y(a; 1)y (a; £)q(t) df’]/ W,
where
(17) W = p(t)[ ydi/di — ydy/di] = const.
Hence
- 2(a:T) = W = y(a; nf;(a;r)y(a; Nty dt | W

.
= y(a; T)fo Gyoo (1.1, @)q(1) d

where G, (1, t', «) is again Green’s function for the boundary-value problem
(4), expressed in terms of the solutions of the initial-value problem (5) and its
adjoint (15). A comparison of (18) with (12) completes the proof.

We now turn to the generalization of Theorem | to the N dimensional case.
The functions p(r) and g(7) of (3) are now replaced by the N X N symmetric
matrices P(r) and Q(1). P(¢) is required to be positive definite for all
0 < ¢ < 7. The N dimensional vectors on which A(«; ) acts are denoted by
Ula; 1) = (U(as 1), . . ., Uy(e; D).

THEOREM 2. Ler a differential operator
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(19) Aa; 1) = (d/dt)(P(1)d/dt) + aQ (1)

be defined for 0 < t < T,0 € a < 1, with P(t) and Q (1) as discussed above.
Let N\ (a) and U®(a; 1) be the eigenvalues and eigenfunctions for the

boundary-value problem

(20)  A(a; )U (a3 1) + M) (a3 1) =0, U(a; 0) = U(a; T) = 0.
Let 7a; 1) (j=1,..., N) be the N independent solutions of the initial-
value problem
Q2D A(e; )Fa: 1) =0, ¥a;0)=0, (d/d)y?(a;0) =85,
Let D (a) be
(22) D(a) = det[ ¥ (a; T)].
Then, for every a
D ()

2 M(a)
H I 7 _’W

23
@) o 20O

OUuTLINE OF THE PROOF. The proof of Theorem 2 is again based on
evaluating the logarithmic derivative of the two sides of (23). Once again it is
shown that the logarithmic derivative can be expanded in the form

df (« N T df (a -

(24) % /@)= 2 J, @ G 6 @2, (1) = % /F (@)
where f(a) and f(a) denote the functions of a on the left- and right-hand
sides of equation (23) respectively. The Green’s “function” is a matrix
GM(t, 1, a). In proving (24) use is made of the two equivalent methods to
express the Green’s function, the spectral representation and the repre-
sentation by means of the 2NV independent solutions of equation (21) and its
adjoint.
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