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Eigenproblems for ODE Pencils

N(y):)"D(y)a y:y(X)a X € [Oal]a

0 _ 1 .
Uly)=AUi(y), j=1,....n

» N is a differential expression of order n > 0;
» P is a differential expression of order p > 0;

» the boundary condition operators should satisfy some
(modified) strong Birkhoff regularity hypotheses.



An unbelievably elementary problem (Petterson-Kdnig rod)

y(0) =y'(0) =0,
Y'(1)=0, yB®(1)- My (1)=0.

To write in terms of a linear operator:
> z:=y"  y(x) = (Kz)(x) = / (x — t)z(t)dt;
0

> K is isomorphism from L2(0,1) to

W3 gc == {y € W3(0,1) | y(0) = 0 = y'(0)}.

» Problem becomes
1
=Xz, z(1)=0, Z(1)= )\’y/ z(t)dt.
0

> A ) z(t)dt = [} 2"(t)dt = 2'(1) — Z(0).



» Thus z satisfies
=Xz, z(1)=0, (1-+)Z(1)+~Z(0)=0.

» The natural operator associated with this problem is not
self-adjoint but with real eigenvalues, and has eigenfunctions

zn(x) = sin(un(x — 1));  cos(pn) = (1 —~71),

which form a Riesz basis in L2(0, 1);

» eigenfunctions of the original pencil are

Ya(x) = (Kzn)(x) = :2 {sin(jun(x — 1)) + sin(j1n) + Xt1n c0s(1)}

n

. . 2 .
and form a basis in W; gc;



» eigenfunctions (inys) do not form a basis in W3(0,1) or
1.
W s

3 - 1 — ~—1)2\ 1/2
lmsals ~ (5 47+ B=35) 7 — oy

but if f(x) = x then

<f’,un)/n>1 = 7(1 - 7_1) + 0(1)

which does not tend to zero;
» similarly (12y,) do not form a basis in L2(0,1).

In fact, for this problem, the (y,) are not even complete in
w30, 1).



Orr-Sommerfeld with A-dependent boundary conditions
{((D? = a?))? —iaR(u(D? = a®) = u")} y = N(D? = a®)y

with boundary conditions

iaRu"(0)y(0) = A(y”(0) + o?y(0)),
y"(0) = 3ay'(0) — iaR(y(y"(0) + a®y(0)) + 1/ (0)y(0)) = Ay’ (0).

We can reduce this linear pencil problem to a linear operator
problem (Shkalikov (1986); M., Shkalikov and Tretter (2003)) and
prove the following:

Theorem
The eigen- and associated functions of the pencil problem form a
Riesz basis in

Wasc = {y € W5(0,1)| y(1) = 0= y'(1)}.



Remark

The eigen- and associated functions of the pencil do not form a
Riesz basis in W} g or in W) g or in L?(0,1). The difference
compared to Petferson—Kb'nig is that this time, to get rid of
A-dependence in the BCs, we have to work with z"(0), and for this
reason we need to be in a Sobolev space one order higher than
before.



Sturm-Liouville problems with A\-dependent BCs

_/lzz)// + CI(XW =\, x€ [O’ 1]7 (1)
¥(0) =0, (2)
(ABr+ a1)ip(1) = (AB2 + a2)d'(1), (3)

in which

B1 a1 )
= det > 0.
P ( B2 a2
This can be formulated as a self-adjoint problem in L2(0,1) & C
(Friedman, 1956; J. Walter, 1973) with inner product

1
W) = lagt [ vE v- (f)
0 Y
The eigenfunctions of L form an ONB in the extended space, and
their first components form a Riesz basis in L2(0,1) [J. Walter,
1973; Fulton, 1976].



Compact Potential Resonance Problems in QM
Find k € C such that

_,l/// + CI(X)T/) = k2w7 X € [07 1]7 (4)

has a non-trivial solution with
P(0) =0; '(1) = iky(1). (5)

This problem is a k-quadratic pencil problem with a linearly
k-dependent boundary condition. It has some particularly nasty
properties:

The eigen- and associated functions do not form a basis
in L2(0,1) and may not even be complete.



Waveguides: PDEs on tubes and Glazman decomposition
The simplest such problem is that of finding eigenvalues for the
Laplacian in a domain with (infinite) cylindrical ends:

v=0




Glazman decomposition:




Zoom in on one of the interfaces:

v=0
0
v,=0
Q | 9
-Ay = )»1%) T -Ay,=An,
v,=0
v=0
0

On interface match exterior solution v. with interior solution vp;
also match normal derivatives:

| | aVe 8v0
Velr = Volr: # = — 5 -
eir r 8Ve 81/0



We define
Re(A): exterior Neumann to Dirichlet map on T,

Ro(A): interior Neumann to Dirichlet map on .

Then 5
Ve
Velr = Re()‘)aiy
8V0
volr = RO()\)aiy0

and the matching condition becomes:
ker(Re(A) +Ro(X)) # {0}
Equivalently,

o = —1 is an eigenvalue of the pencil cRe(A) — Ro(N).



Questions:
» For which A are the operators Re(A) and Ro(\) well defined?
» How do we represent these operators for practical purposes?
» How do the pencil eigenvalues o depend on A7



Interior Neumann-Dirichlet map
» Ro(\) is a meromorphic function of ;
» the residues at the poles are all negative self-adjoint operators;

» For A € R between Neumann eigenvalues, Ro(\) is an
increasing function of A.

In order to represent Ro(A) we use the following:
» an orthonormal basis on interface: (¢x)52, spanning L?(I);
» interior Neumann eigenvalues (1m)%S_; and eigenfunctions
(Um)m=1-
An elementary calculation gives the Mittag-Leffler expansion

[e.9]

(Ro(N)¢k: Po)r Z

m=

<I5k, Unlr)r - (Unlr, ¢0)r

m

This expression can be used to prove the properties of Ro(A) listed
above.



Exterior Neumann-Dirichlet map
Decompose x = (x,y) where y is transverse coordinate in I":

v=0

v=0
Introducing the eigenfunctions (w,)32; on the cross-section T,

—Arw, = Kkaw,, n=12,...,

Z g,Wn )

This allows the matrix elements (R e( )qu,(bk)r to be calculated:

<Re(>\)¢j7¢k>r _ Z <¢j7 Wn>F<Wm¢k>F.

Kn— A

n=1



Behaviour of eigenvalues o(\) of o R.(A) — Ro(A)

The pencil eigenvalues are monotone increasing between interior
Neumann eigenvalues:

o, (») for twisted waveguide

1.9 2 21 2.3 2.4 25

2.2
Re(h)

Figure: Pencil eigenvalue as a function of A

» Monotonicity makes it easy in principle to find X s.t.
gj(A) = —1 for some j. ..

> ...but isn't every evaluation of oj(\) very expensive?



Efficiency issues

In the expressions

RoWr ) = 3~ (s Unlrhr - (Unlr. e
m=1"M
> ¢17Wn>r<wm¢k>
< ¢J7¢k ; \/7)\ Y

the most expensive parts can be calculated independently of A at
the outset.

The speed of convergence of the infinite series can be substantially
accelerated by calculating differences, e.g.

(Ro(M ok 9j)r = (Ro(Aref )0k D)

and computing the Neumann-Dirichlet matrix elements
(Ro(Aref )Pk, @) by solving boundary value problems in the usual
way. (What is the reason in terms of PDEs?)



Example: bent waveguide in R?

width = 1

Figure: Twisted Waveguide



Essential spectrum is known:
2
Oess = [T°/4, +00).

Exner et al. show that bending the waveguide in the direction of
the Dirichlet boundary condition will cause an eigenvalue to appear
below the essential spectrum.

Accuracy Eigenvalue found
1 mesh refinement; sum over u,, < 10 none found
3 mesh refinements; sum over pp, < 50 2.3461
4 mesh refinements; sum over p,, < 100 2.3459
5 mesh refinements; sum over u, < 200 2.3454

Table: Levels of accuracy and eigenvalue found below the essential
spectrum, caused by bending the waveguide.



Resonant waveguides: almost-trapping of waves
This problem is considered in detail by Aslanyan, Parnovski and
Vassiliev (2000).

Figure: Waveguide obstructed by a symmetric obstacle centred at (0, 9).



o A

1.50499 (low)
0.0 1.50486 (high)
1.5048 (A. Aslanyan)
1.5080 + 10~*i (low)
0.1 | 15078+ 10~%i (high)
1.5102 + 107%i (AA)
1.5167 +5 x 10~%/ (low)
0.2 | 1.5165 + 5 x 1074/ (high)
1.5188 4+ 5 x 1074/ (AA)

Table: Experiments on the obstructed waveguide.



Can we reduce our problem to a polynomial-in-\ pencil?

Or: what if the PDE is more complicated and we cannot compute
Re?

We want to find A such that

0 € Specp (Re(A) + Ro(N)) -

» We can truncate the Mittag-Leffler expansion of Ro(A). ..

> ...but Re(A) is harder to approximate without causing
spectral pollution.



A cheap trick gets round the problem with Re(\) in many cases.

1. Choose inner domain €y ‘large’ so eigenfunctions have
decayed well by the time they reach the interface.

2. Replace the PDE with
—Au+ixx(-)u=Au

where, e.g.,
(x,y) = 1 if x| < X

XOYI= 0 0 if x| > X
and X ~ diam(€g)/4 is large. This has the following effect on
eigenvalues:

Ao Ag A A+,
3. Approximate R.(-) very crudely by a constant, e.g. R =0

(Neumann boundary conditions).

It can be proved that this strategy will only pollute exponentially
close to the real axis.



o A
1.5065
0.0 1.50486 (previous)
1.5048 (A. Aslanyan)
1.5075
0.1 | 15078+ 10~%i (prev.)

1.5102 + 10~4i (AA)

0.2

1.5153
1.5165 + 5 x 10™*i (prev.)
1.5188 4+ 5 x 1074/ (AA)

Table: Waveguide revisited




