# Differential operators with $\lambda$ -dependent boundary conditions

Marco Marletta <sup>1</sup> Michael Levitin (part II) A. Shkalikov and C. Tretter (part I)

MOPNET 2, Nottingham, March 2010

<sup>&</sup>lt;sup>1</sup>Work partially funded by EPSRC Grants GR/R44959/01, EP/C008324/1  $\sim 2000$ 

## Eigenproblems for ODE Pencils

$$egin{aligned} \mathcal{N}(y) &= \lambda \mathcal{P}(y), \quad y = y(x), \;\; x \in [0,1], \ &U_j^0(y) &= \lambda U_j^1(y), \;\; j = 1, \dots, n. \end{aligned}$$

- *N* is a differential expression of order n > 0;
- *P* is a differential expression of order  $p \ge 0$ ;
- the boundary condition operators should satisfy some (modified) strong Birkhoff regularity hypotheses.

An unbelievably elementary problem (Petterson-König rod)

$$y^{(4)} = \lambda y'',$$
  
 $y(0) = y'(0) = 0,$   
 $y''(1) = 0, \quad y^{(3)}(1) - \lambda \gamma y'(1) = 0.$ 

To write in terms of a linear operator:

• 
$$z := y'', \quad y(x) = (Kz)(x) := \int_0^x (x-t)z(t)dt;$$

• K is isomorphism from  $L^2(0,1)$  to

$$W_{2,BC}^2 := \{ y \in W_2^2(0,1) \, | \, y(0) = 0 = y'(0) \}.$$

Problem becomes

$$z^{\prime\prime}=\lambda z, \hspace{1em} z(1)=0, \hspace{1em} z^{\prime}(1)=\lambda\gamma\int_{0}^{1}z(t)dt.$$

• 
$$\lambda \int_0^1 z(t) dt = \int_0^1 z''(t) dt = z'(1) - z'(0).$$

Thus z satisfies

$$z'' = \lambda z, \quad z(1) = 0, \quad (1 - \gamma)z'(1) + \gamma z'(0) = 0.$$

 The natural operator associated with this problem is not self-adjoint but with real eigenvalues, and has eigenfunctions

$$z_n(x) = \sin(\mu_n(x-1)); \quad \cos(\mu_n) = (1 - \gamma^{-1});$$

which form a Riesz basis in  $L^2(0, 1)$ ;

eigenfunctions of the original pencil are

$$y_n(x) = (Kz_n)(x) = \frac{1}{\mu_n^2} \left\{ \sin(\mu_n(x-1)) + \sin(\mu_n) + x\mu_n \cos(\mu_n) \right\}$$

and form a basis in  $W_{2,BC}^2$ ;

• eigenfunctions  $(\mu_n y_n)$  do not form a basis in  $W_2^1(0,1)$  or  $W_{2,BC}^1$ :

$$\|\mu_n y_n\|_1 \sim \left(\frac{3}{2} + \gamma^{-1} + \frac{(1 - \gamma^{-1})^2}{3}\right)^{1/2} = O(1)$$

but if f(x) = x then

$$\langle f, \mu_n y_n \rangle_1 = \frac{4}{3} (1 - \gamma^{-1}) + o(1)$$

which does not tend to zero;

• similarly  $(\mu_n^2 y_n)$  do not form a basis in  $L^2(0,1)$ . In fact, for this problem, the  $(y_n)$  are not even complete in  $W_2^1(0,1)$ . Orr-Sommerfeld with  $\lambda$ -dependent boundary conditions

$$\left\{\left((D^2-\alpha^2)\right)^2-i\alpha R(u(D^2-\alpha^2)-u'')\right\}y=\lambda(D^2-\alpha^2)y$$

with boundary conditions

$$y(1) = 0; \quad y'(1) = 0,$$
  
$$i\alpha Ru''(0)y(0) = \lambda(y''(0) + \alpha^2 y(0)),$$
  
$$y'''(0) - 3\alpha^2 y'(0) - i\alpha R(\gamma(y''(0) + \alpha^2 y(0)) + u'(0)y(0)) = \lambda y'(0).$$

We can reduce this linear pencil problem to a linear operator problem (Shkalikov (1986); M., Shkalikov and Tretter (2003)) and prove the following:

## Theorem

The eigen- and associated functions of the pencil problem form a Riesz basis in

$$W_{2,BC}^3 = \{y \in W_2^3(0,1) \, | \, y(1) = 0 = y'(1)\}.$$

#### Remark

The eigen- and associated functions of the pencil do not form a Riesz basis in  $W_{2,BC}^2$  or in  $W_{2,BC}^1$  or in  $L^2(0,1)$ . The difference compared to Petterson-König is that this time, to get rid of  $\lambda$ -dependence in the BCs, we have to work with z''(0), and for this reason we need to be in a Sobolev space one order higher than before.

Sturm-Liouville problems with  $\lambda$ -dependent BCs

$$-\psi'' + q(x)\psi = \lambda\psi, \quad x \in [0,1], \tag{1}$$

$$\psi(\mathbf{0}) = \mathbf{0},\tag{2}$$

$$(\lambda\beta_1 + \alpha_1)\psi(1) = (\lambda\beta_2 + \alpha_2)\psi'(1), \tag{3}$$

in which

$$\rho := \det \left( \begin{array}{cc} \beta_1 & \alpha_1 \\ \beta_2 & \alpha_2 \end{array} \right) > 0.$$

This can be formulated as a self-adjoint problem in  $L^2(0,1) \oplus \mathbb{C}$ (Friedman, 1956; J. Walter, 1973) with inner product

$$\langle \underline{\psi}, \underline{\phi} \rangle = \rho^{-1} c_{\psi} \overline{c_{\phi}} + \int_{0}^{1} \psi \overline{\phi}; \qquad \underline{\psi} = \begin{pmatrix} \psi \\ c_{\psi} \end{pmatrix}$$

The eigenfunctions of L form an ONB in the extended space, and their first components form a Riesz basis in  $L^2(0,1)$  [J. Walter, 1973; Fulton, 1976].

Compact Potential Resonance Problems in QM Find  $k \in \mathbb{C}$  such that

$$-\psi'' + q(x)\psi = k^2\psi, \quad x \in [0, 1],$$
(4)

has a non-trivial solution with

$$\psi(0) = 0; \quad \psi'(1) = ik\psi(1).$$
 (5)

This problem is a k-quadratic pencil problem with a linearly k-dependent boundary condition. It has some particularly nasty properties:

The eigen- and associated functions do not form a basis in  $L^2(0,1)$  and may not even be complete.

Waveguides: PDEs on tubes and Glazman decomposition The simplest such problem is that of finding eigenvalues for the Laplacian in a domain with (infinite) cylindrical ends:



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Glazman decomposition:



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Zoom in on one of the interfaces:



On interface match exterior solution  $v_e$  with interior solution  $v_0$ ; also match normal derivatives:

$$|v_e|_{\Gamma} = |v_0|_{\Gamma}; \quad \frac{\partial v_e}{\partial \nu_e} = -\frac{\partial v_0}{\partial \nu_0}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

We define

 $\mathcal{R}_{e}(\lambda)$ : exterior Neumann to Dirichlet map on  $\Gamma$ ,

 $\mathcal{R}_0(\lambda)$ : interior Neumann to Dirichlet map on  $\Gamma$ .

Then

$$\begin{aligned} v_e|_{\Gamma} &= \mathcal{R}_e(\lambda) \frac{\partial v_e}{\partial \nu_e} \\ v_0|_{\Gamma} &= \mathcal{R}_0(\lambda) \frac{\partial v_0}{\partial \nu_0} \end{aligned}$$

and the matching condition becomes:

$$\ker(\mathcal{R}_e(\lambda) + \mathcal{R}_0(\lambda)) \neq \{0\}.$$

Equivalently,

 $\sigma = -1$  is an eigenvalue of the pencil  $\sigma \mathcal{R}_e(\lambda) - \mathcal{R}_0(\lambda)$ .

Questions:

For which  $\lambda$  are the operators  $\mathcal{R}_{e}(\lambda)$  and  $\mathcal{R}_{0}(\lambda)$  well defined?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ How do we represent these operators for practical purposes?
- How do the pencil eigenvalues  $\sigma$  depend on  $\lambda$ ?

### Interior Neumann-Dirichlet map

- $\mathcal{R}_0(\lambda)$  is a meromorphic function of  $\lambda$ ;
- the residues at the poles are all negative self-adjoint operators;
- For λ ∈ ℝ between Neumann eigenvalues, R<sub>0</sub>(λ) is an increasing function of λ.

In order to represent  $\mathcal{R}_0(\lambda)$  we use the following:

- ► an orthonormal basis on interface: (φ<sub>k</sub>)<sup>∞</sup><sub>k=1</sub> spanning L<sup>2</sup>(Γ);
- ▶ interior Neumann eigenvalues (µ<sub>m</sub>)<sup>∞</sup><sub>m=1</sub> and eigenfunctions (U<sub>m</sub>)<sup>∞</sup><sub>m=1</sub>.

An elementary calculation gives the Mittag-Leffler expansion

$$\langle \mathcal{R}_0(\lambda)\phi_k,\phi_\ell\rangle_{\Gamma} = \sum_{m=1}^{\infty} \frac{1}{\mu_m - \lambda} \langle \phi_k, U_m|_{\Gamma}\rangle_{\Gamma} \cdot \langle U_m|_{\Gamma},\phi_\ell\rangle_{\Gamma} \;.$$

This expression can be used to prove the properties of  $\mathcal{R}_0(\lambda)$  listed above.

#### **Exterior Neumann-Dirichlet map**

Decompose  $\mathbf{x} = (x, \mathbf{y})$  where  $\mathbf{y}$  is transverse coordinate in  $\Gamma$ :



Introducing the eigenfunctions  $(w_n)_{n=1}^{\infty}$  on the cross-section  $\Gamma$ ,

$$-\Delta_{\Gamma} w_n = \kappa_n w_n, \quad n = 1, 2, \dots,$$
$$\mathcal{R}_e(\lambda)g = \sum_{n=1}^{\infty} \frac{\langle g, w_n \rangle_{\Gamma}}{\sqrt{\kappa_n - \lambda}} w_n(\mathbf{y}).$$

This allows the matrix elements  $\langle \mathcal{R}_e(\lambda)\phi_j, \phi_k \rangle_{\Gamma}$  to be calculated:

$$\langle \mathcal{R}_{e}(\lambda)\phi_{j},\phi_{k}\rangle_{\Gamma} = \sum_{n=1}^{\infty} \frac{\langle \phi_{j},w_{n}\rangle_{\Gamma}\langle w_{n},\phi_{k}\rangle_{\Gamma}}{\sqrt{\kappa_{n}-\lambda}}.$$

Behaviour of eigenvalues  $\sigma(\lambda)$  of  $\sigma \mathcal{R}_e(\lambda) - \mathcal{R}_0(\lambda)$ 

The pencil eigenvalues are monotone increasing between interior Neumann eigenvalues:



Figure: Pencil eigenvalue as a function of  $\lambda$ 

- Monotonicity makes it easy in principle to find λ s.t. σ<sub>j</sub>(λ) = −1 for some j...
- ... but isn't every evaluation of  $\sigma_i(\lambda)$  very expensive?

## **Efficiency issues**

In the expressions

$$\langle \mathcal{R}_0(\lambda)\phi_k,\phi_j\rangle_{\Gamma} = \sum_{m=1}^{\infty} \frac{1}{\mu_m - \lambda} \langle \phi_k,U_m|_{\Gamma}\rangle_{\Gamma} \cdot \langle U_m|_{\Gamma},\phi_\ell\rangle_{\Gamma} ,$$

$$\langle \mathcal{R}_{e}(\lambda)\phi_{j},\phi_{k}\rangle_{\Gamma} = \sum_{n=1}^{\infty} \frac{\langle \phi_{j},w_{n}\rangle_{\Gamma}\langle w_{n},\phi_{k}\rangle_{\Gamma}}{\sqrt{\kappa_{n}-\lambda}},$$

the most expensive parts can be calculated independently of  $\lambda$  at the outset.

The speed of convergence of the infinite series can be substantially accelerated by calculating differences, e.g.

$$\langle \mathcal{R}_{0}(\lambda)\phi_{k},\phi_{j}\rangle_{\Gamma}-\langle \mathcal{R}_{0}(\lambda_{ref})\phi_{k},\phi_{j}\rangle_{\Gamma}$$

and computing the Neumann-Dirichlet matrix elements  $\langle \mathcal{R}_0(\lambda_{ref})\phi_k,\phi_j\rangle_{\Gamma}$  by solving boundary value problems in the usual way. (What is the reason in terms of PDEs?)

## Example: bent waveguide in $\mathbb{R}^2$



#### Figure: Twisted Waveguide

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Essential spectrum is known:

$$\sigma_{\rm ess} = [\pi^2/4, +\infty).$$

Exner et al. show that bending the waveguide in the direction of the Dirichlet boundary condition will cause an eigenvalue to appear below the essential spectrum.

| Accuracy                                          | Eigenvalue found |
|---------------------------------------------------|------------------|
| 1 mesh refinement; sum over $\mu_{\it m} \leq$ 10 | none found       |
| 3 mesh refinements; sum over $\mu_{m} \leq$ 50    | 2.3461           |
| 4 mesh refinements; sum over $\mu_m \leq 100$     | 2.3459           |
| 5 mesh refinements; sum over $\mu_m \leq$ 200     | 2.3454           |

Table: Levels of accuracy and eigenvalue found below the essential spectrum, caused by bending the waveguide.

## **Resonant waveguides: almost-trapping of waves** This problem is considered in detail by Aslanyan, Parnovski and Vassiliev (2000).



Figure: Waveguide obstructed by a symmetric obstacle centred at  $(0, \delta)$ .

| δ   | $\lambda$                          |
|-----|------------------------------------|
| 0.0 | 1.50499 (low)                      |
|     | 1.50486 (high)                     |
|     | 1.5048 (A. Aslanyan)               |
| 0.1 | $1.5080 + 10^{-4}i$ (low)          |
|     | $1.5078 + 10^{-4}i$ (high)         |
|     | $1.5102 + 10^{-4}i$ (AA)           |
| 0.2 | $1.5167 + 5 	imes 10^{-4} i$ (low) |
|     | $1.5165 + 5 	imes 10^{-4}i$ (high) |
|     | $1.5188 + 5 	imes 10^{-4}i$ (AA)   |

Table: Experiments on the obstructed waveguide.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Can we reduce our problem to a polynomial-in- $\lambda$  pencil? Or: what if the PDE is more complicated and we cannot compute  $\mathcal{R}_e$ ?

We want to find  $\lambda$  such that

```
0 \in \operatorname{Spec}_{\rho} \left( \mathcal{R}_{e}(\lambda) + \mathcal{R}_{0}(\lambda) \right).
```

• We can truncate the Mittag-Leffler expansion of  $\mathcal{R}_0(\lambda)$ ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

... but *R<sub>e</sub>(λ)* is harder to approximate without causing spectral pollution.

A cheap trick gets round the problem with  $\mathcal{R}_{e}(\lambda)$  in many cases.

- 1. Choose inner domain  $\Omega_0$  'large' so eigenfunctions have decayed well by the time they reach the interface.
- 2. Replace the PDE with

$$-\Delta u + i\chi_X(\cdot)u = \lambda u$$

where, e.g.,

$$\chi(x, \mathbf{y}) = \begin{cases} 1 & \text{if } |x| < X \\ 0 & \text{if } |x| \ge X \end{cases}$$

and  $X \approx \text{diam}(\Omega_0)/4$  is large. This has the following effect on eigenvalues:

$$\lambda \mapsto \lambda_R \approx \lambda + i.$$

3. Approximate  $\mathcal{R}_e(\cdot)$  very crudely by a constant, e.g.  $\mathcal{R}_e \equiv 0$  (Neumann boundary conditions).

It can be proved that this strategy will only pollute exponentially close to the real axis.

| δ   | $\lambda$                           |
|-----|-------------------------------------|
| 0.0 | 1.5065                              |
|     | 1.50486 (previous)                  |
|     | 1.5048 (A. Aslanyan)                |
| 0.1 | 1.5075                              |
|     | $1.5078 + 10^{-4}i$ (prev.)         |
|     | $1.5102 + 10^{-4}i$ (AA)            |
| 0.2 | 1.5153                              |
|     | $1.5165 + 5 	imes 10^{-4}i$ (prev.) |
|     | $1.5188 + 5 	imes 10^{-4} i$ (AA)   |

Table: Waveguide revisited

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>