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Eigenproblems for ODE Pencils

N(y) = λP(y), y = y(x), x ∈ [0, 1],

U0
j (y) = λU1

j (y), j = 1, . . . , n.

I N is a differential expression of order n > 0;

I P is a differential expression of order p ≥ 0;

I the boundary condition operators should satisfy some
(modified) strong Birkhoff regularity hypotheses.



An unbelievably elementary problem (Petterson-König rod)

y (4) = λy ′′,

y(0) = y ′(0) = 0,

y ′′(1) = 0, y (3)(1)− λγy ′(1) = 0.

To write in terms of a linear operator:

I z := y ′′, y(x) = (Kz)(x) :=

∫ x

0
(x − t)z(t)dt;

I K is isomorphism from L2(0, 1) to

W 2
2,BC := {y ∈W 2

2 (0, 1) | y(0) = 0 = y ′(0)}.

I Problem becomes

z ′′ = λz , z(1) = 0, z ′(1) = λγ

∫ 1

0
z(t)dt.

I λ
∫ 1

0 z(t)dt =
∫ 1

0 z ′′(t)dt = z ′(1)− z ′(0).



I Thus z satisfies

z ′′ = λz , z(1) = 0, (1− γ)z ′(1) + γz ′(0) = 0.

I The natural operator associated with this problem is not
self-adjoint but with real eigenvalues, and has eigenfunctions

zn(x) = sin(µn(x − 1)); cos(µn) = (1− γ−1),

which form a Riesz basis in L2(0, 1);

I eigenfunctions of the original pencil are

yn(x) = (Kzn)(x) =
1

µ2
n

{sin(µn(x − 1)) + sin(µn) + xµn cos(µn)}

and form a basis in W 2
2,BC ;



I eigenfunctions (µnyn) do not form a basis in W 1
2 (0, 1) or

W 1
2,BC :

‖µnyn‖1 ∼
(

3

2
+ γ−1 +

(1− γ−1)2

3

)1/2

= O(1)

but if f (x) = x then

〈f , µnyn〉1 =
4

3
(1− γ−1) + o(1)

which does not tend to zero;

I similarly (µ2
nyn) do not form a basis in L2(0, 1).

In fact, for this problem, the (yn) are not even complete in
W 1

2 (0, 1).



Orr-Sommerfeld with λ-dependent boundary conditions{
((D2 − α2))2 − iαR(u(D2 − α2)− u′′)

}
y = λ(D2 − α2)y

with boundary conditions

y(1) = 0; y ′(1) = 0,

iαRu′′(0)y(0) = λ(y ′′(0) + α2y(0)),

y ′′′(0)− 3α2y ′(0)− iαR(γ(y ′′(0) +α2y(0)) + u′(0)y(0)) = λy ′(0).

We can reduce this linear pencil problem to a linear operator
problem (Shkalikov (1986); M., Shkalikov and Tretter (2003)) and
prove the following:

Theorem
The eigen- and associated functions of the pencil problem form a
Riesz basis in

W 3
2,BC = {y ∈W 3

2 (0, 1) | y(1) = 0 = y ′(1)}.



Remark
The eigen- and associated functions of the pencil do not form a
Riesz basis in W 2

2,BC or in W 1
2,BC or in L2(0, 1). The difference

compared to Petterson-König is that this time, to get rid of
λ-dependence in the BCs, we have to work with z ′′(0), and for this
reason we need to be in a Sobolev space one order higher than
before.



Sturm-Liouville problems with λ-dependent BCs

−ψ′′ + q(x)ψ = λψ, x ∈ [0, 1], (1)

ψ(0) = 0, (2)

(λβ1 + α1)ψ(1) = (λβ2 + α2)ψ′(1), (3)

in which

ρ := det

(
β1 α1

β2 α2

)
> 0.

This can be formulated as a self-adjoint problem in L2(0, 1)⊕ C
(Friedman, 1956; J. Walter, 1973) with inner product

〈ψ, φ〉 = ρ−1cψcφ +

∫ 1

0
ψφ; ψ =

(
ψ
cψ

)
.

The eigenfunctions of L form an ONB in the extended space, and
their first components form a Riesz basis in L2(0, 1) [J. Walter,
1973; Fulton, 1976].



Compact Potential Resonance Problems in QM
Find k ∈ C such that

−ψ′′ + q(x)ψ = k2ψ, x ∈ [0, 1], (4)

has a non-trivial solution with

ψ(0) = 0; ψ′(1) = ikψ(1). (5)

This problem is a k-quadratic pencil problem with a linearly
k-dependent boundary condition. It has some particularly nasty
properties:

The eigen- and associated functions do not form a basis
in L2(0, 1) and may not even be complete.



Waveguides: PDEs on tubes and Glazman decomposition
The simplest such problem is that of finding eigenvalues for the
Laplacian in a domain with (infinite) cylindrical ends:
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Glazman decomposition:
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Zoom in on one of the interfaces:
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On interface match exterior solution ve with interior solution v0;
also match normal derivatives:

ve |Γ = v0|Γ ;
∂ve

∂νe
= −∂v0

∂ν0
.



We define

Re(λ): exterior Neumann to Dirichlet map on Γ,

R0(λ): interior Neumann to Dirichlet map on Γ.

Then

ve |Γ = Re(λ)
∂ve

∂νe

v0|Γ = R0(λ)
∂v0

∂ν0

and the matching condition becomes:

ker(Re(λ) +R0(λ)) 6= {0}.

Equivalently,

σ = −1 is an eigenvalue of the pencil σRe(λ)−R0(λ).



Questions:

I For which λ are the operators Re(λ) and R0(λ) well defined?

I How do we represent these operators for practical purposes?

I How do the pencil eigenvalues σ depend on λ?



Interior Neumann-Dirichlet map

I R0(λ) is a meromorphic function of λ;

I the residues at the poles are all negative self-adjoint operators;

I For λ ∈ R between Neumann eigenvalues, R0(λ) is an
increasing function of λ.

In order to represent R0(λ) we use the following:

I an orthonormal basis on interface: (φk)∞k=1 spanning L2(Γ);

I interior Neumann eigenvalues (µm)∞m=1 and eigenfunctions
(Um)∞m=1.

An elementary calculation gives the Mittag-Leffler expansion

〈R0(λ)φk , φ`〉Γ =
∞∑

m=1

1

µm − λ
〈φk ,Um|Γ〉Γ · 〈Um|Γ, φ`〉Γ .

This expression can be used to prove the properties of R0(λ) listed
above.



Exterior Neumann-Dirichlet map
Decompose x = (x , y) where y is transverse coordinate in Γ:

!
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Introducing the eigenfunctions (wn)∞n=1 on the cross-section Γ,

−∆Γwn = κnwn, n = 1, 2, . . . ,

Re(λ)g =
∞∑

n=1

〈g ,wn〉Γ√
κn − λ

wn(y).

This allows the matrix elements 〈Re(λ)φj , φk〉Γ to be calculated:

〈Re(λ)φj , φk〉Γ =
∞∑

n=1

〈φj ,wn〉Γ〈wn, φk〉Γ√
κn − λ

.



Behaviour of eigenvalues σ(λ) of σRe(λ)−R0(λ)

The pencil eigenvalues are monotone increasing between interior
Neumann eigenvalues:
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Figure: Pencil eigenvalue as a function of λ

I Monotonicity makes it easy in principle to find λ s.t.
σj(λ) = −1 for some j . . .

I . . . but isn’t every evaluation of σj(λ) very expensive?



Efficiency issues

In the expressions

〈R0(λ)φk , φj〉Γ =
∞∑

m=1

1

µm − λ
〈φk ,Um|Γ〉Γ · 〈Um|Γ, φ`〉Γ ,

〈Re(λ)φj , φk〉Γ =
∞∑

n=1

〈φj ,wn〉Γ〈wn, φk〉Γ√
κn − λ

,

the most expensive parts can be calculated independently of λ at
the outset.
The speed of convergence of the infinite series can be substantially
accelerated by calculating differences, e.g.

〈R0(λ)φk , φj〉Γ − 〈R0(λref )φk , φj〉Γ

and computing the Neumann-Dirichlet matrix elements
〈R0(λref )φk , φj〉Γ by solving boundary value problems in the usual
way. (What is the reason in terms of PDEs?)



Example: bent waveguide in R2
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Figure: Twisted Waveguide



Essential spectrum is known:

σess = [π2/4,+∞).

Exner et al. show that bending the waveguide in the direction of
the Dirichlet boundary condition will cause an eigenvalue to appear
below the essential spectrum.

Accuracy Eigenvalue found

1 mesh refinement; sum over µm ≤ 10 none found
3 mesh refinements; sum over µm ≤ 50 2.3461

4 mesh refinements; sum over µm ≤ 100 2.3459
5 mesh refinements; sum over µm ≤ 200 2.3454

Table: Levels of accuracy and eigenvalue found below the essential
spectrum, caused by bending the waveguide.



Resonant waveguides: almost-trapping of waves
This problem is considered in detail by Aslanyan, Parnovski and
Vassiliev (2000).
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Figure: Waveguide obstructed by a symmetric obstacle centred at (0, δ).



δ λ

1.50499 (low)
0.0 1.50486 (high)

1.5048 (A. Aslanyan)

1.5080 + 10−4i (low)
0.1 1.5078 + 10−4i (high)

1.5102 + 10−4i (AA)

1.5167 + 5× 10−4i (low)
0.2 1.5165 + 5× 10−4i (high)

1.5188 + 5× 10−4i (AA)

Table: Experiments on the obstructed waveguide.



Can we reduce our problem to a polynomial-in-λ pencil?
Or: what if the PDE is more complicated and we cannot compute
Re?

We want to find λ such that

0 ∈ Specp (Re(λ) +R0(λ)) .

I We can truncate the Mittag-Leffler expansion of R0(λ). . .

I . . . but Re(λ) is harder to approximate without causing
spectral pollution.



A cheap trick gets round the problem with Re(λ) in many cases.

1. Choose inner domain Ω0 ‘large’ so eigenfunctions have
decayed well by the time they reach the interface.

2. Replace the PDE with

−∆u + iχX (·)u = λu

where, e.g.,

χ(x , y) =

{
1 if |x | < X
0 if |x | ≥ X

and X ≈ diam(Ω0)/4 is large. This has the following effect on
eigenvalues:

λ 7→ λR ≈ λ+ i .

3. Approximate Re(·) very crudely by a constant, e.g. Re ≡ 0
(Neumann boundary conditions).

It can be proved that this strategy will only pollute exponentially
close to the real axis.



δ λ

1.5065
0.0 1.50486 (previous)

1.5048 (A. Aslanyan)

1.5075
0.1 1.5078 + 10−4i (prev.)

1.5102 + 10−4i (AA)

1.5153
0.2 1.5165 + 5× 10−4i (prev.)

1.5188 + 5× 10−4i (AA)

Table: Waveguide revisited


