Parameterization of Partial Isometries¹

Motivation: To compute examples for recent research results requires to find column-orthogonal matrices $X \in \mathbb{R}^{N \times n}$, N > n. The problem sounds quite simple:

Write a MATLAB code, say X=partiso(y,N,n), such that for any column-orthogonal matrix $X \in \mathbb{R}^{N \times n}$ there exists a vector of parameters $y \in \mathbb{R}^{Nn-n(n+1)/2}$ with X = partiso(y, N, n).

It is well-known that N(N-1)/2 real parameters are sufficient to generate any orthogonal matrix $\Theta \in \mathbb{R}^{N \times N}$. The number of parameters is equal to the total number of parameters less the number of constraints. Θ has N^2 parameters and there are N(N+1)/2 constraints: N from normalizing the N vectors and N(N-1)/2 from their mutual orthogonality, hence

$$p_{N,N} := N^2 - N(N+1)/2 = N(N-1)/2.$$

Such an orthogonal matrix can be generated numerically in various ways (for example by Jacobi rotations) but for rectangular orthogonal matrices the situation is not that straightforward.

Recall that a matrix $X \in \mathbb{R}^{N \times n}$, $N \ge n$, is called a **partial isometry** if $XX^TX = X$ (here the superscript 'T' denotes transposition). In particular we have $X^TX = I_n$ and XX^T is a projector.

The n column vectors of X are normalized and they are mutually perpendicular. Hence there are

$$p_{N,n} = Nn - n(n+1)/2$$

real parameters $y \in \mathbb{R}^{p_{N,n}}$. The question is: given y, how to generate X?

Special Case - n divides N: Suppose N=nm and consider the partition $X=\begin{bmatrix} X_1\\Y\end{bmatrix}$ where $X_1\in\mathbb{R}^{n\times n}$. Then $X^TX=I_n=X_1^TX_1+Y^TY$ implies $X_1=\Phi_1S_1\Theta_1,Y=\Psi C_1\Theta_1$, where $S_1=\sin(\Sigma_1),C_1=\cos(\Sigma_1)$ for any diagonal matrix Σ , and $\Phi_1,\Theta_1\in\mathbb{R}^{n\times n}$ are orthogonal whilst $\Psi\in\mathbb{R}^{n(m-1)\times n}$ is a partial isometry. Let us indicate the number of partitions by writing $X=X_{(m)}$ then the above reads

$$X_{(m)} = \left[\begin{array}{c} \Phi_1 S_1 \Theta_1 \\ X_{(m-1)} C_1 \Theta_1 \end{array} \right]$$

which reveals a recursive formula

$$X_{(m-i)} = \left[\begin{array}{c} \Phi_i S_i \Theta_i \\ X_{(m-1-1)} C_i \Theta_i \end{array} \right].$$

The recursion ends if i = m - 1 and leads to the following expression:

$$X_{m} = \begin{bmatrix} \Phi_{1}S_{1}\Theta_{1} \\ \Phi_{2}S_{2}\Theta_{2}C_{1}\Theta_{1} \\ \Phi_{3}S_{3}\Theta_{3}C_{2}\Theta_{2}C_{1}\Theta_{1} \\ \vdots \\ \Phi_{m-2}S_{m-2}\Theta_{m-2}C_{m-3}\Theta_{m-3}\cdots C_{3}\Theta_{3}C_{2}\Theta_{2}C_{1}\Theta_{1} \\ \Phi_{m-1}S_{m-1}\Theta_{m-1}C_{m-2}\Theta_{m-2}C_{m-3}\Theta_{m-3}\cdots C_{3}\Theta_{3}C_{2}\Theta_{2}C_{1}\Theta_{1} \\ \Phi_{m}C_{m-1}\Theta_{m-1}C_{m-2}\Theta_{m-2}C_{m-3}\Theta_{m-3}\cdots C_{3}\Theta_{3}C_{2}\Theta_{2}C_{1}\Theta_{1} \end{bmatrix}$$

¹partial-iso.tex

Parameter Count: The above expression consists of 2m-1 orthogonal matrices Ψ_i , $i=1,\dots,m,\Theta_k, k=1,\dots,m-1$, which correspond to (2m-1)n(n-1)/2 parameters. The pairs $(S_k,C_k), k=1,\dots,m-1$, add (m-1)n parameters for a total of

$$p_{nm,n} = (2m-1)n(n-1)/2 + (m-1)n = mn^2 - n(n+1)/2$$

which corresponds to the difference of the n^2m parameters in $X_{(m)}$ and the n(n+1)/2 constraints on its column vectors (n form normalization and n(n-1)/2 from the mutual orthogonality).

General Case Finally we address the general case $X \in \mathbb{R}^{N \times n}$. It is sufficient to assume that N = n + r with 0 < r < n and hence $X = \begin{bmatrix} Y \\ Z^T \end{bmatrix}$ where $Y \in \mathbb{R}^{n \times n}$ and $Z \in \mathbb{R}^{r \times n}$. Now we have

$$X^T X = Y^T Y + Z Z^T = \Theta^T C^2 \Theta + \Theta^T S^2 \Theta = I_n.$$

Because rank $(Y) \leq r$ we have $S = \operatorname{diag}\left(\widehat{S}, 0\right)$, $C = \operatorname{diag}\left(\widehat{C}, E\right)$ with $\widehat{S} = \operatorname{diag}\left(\sin(\sigma_1), \cdots, \sin(\sigma_r)\right)$, $\widehat{C} = \operatorname{diag}\left(\cos(\sigma_1), \cdots, \cos(\sigma_r)\right)$ and a diagonal matrix $E \in \mathbb{R}^{(n-r)\times(n-r)}$ such that $E^2 = I_{n-r}$. Hence the result reads

$$X = \begin{bmatrix} \Psi \operatorname{diag} \left(\widehat{C}, I_{n-r} \right) \Theta \\ \Phi \widehat{S} \widehat{\Theta} \end{bmatrix}$$

with the orthogonal matrix $\Phi \in \mathbb{R}^{r \times r}$, with $\widehat{\Theta} := [I_r \ 0]\Theta$ and E has been absorbed by the orthogonal matrix $\Psi \in \mathbb{R}^{n \times n}$. Note that we have the freedom to insert any orthogonal matrix $\Theta_0 \in \mathbb{R}^{(n-r) \times (n-r)}$ into the first partition:

$$\Psi \operatorname{diag}\left(I_r, \Theta_0^T\right) \operatorname{diag}\left(\widehat{C}, I_{n-r}\right) \operatorname{diag}\left(I_r, \Theta_0\right) \Theta.$$

Parameter Count: The orthogonal matrices Ψ and Θ contribute n(n-1) parameters, the pair $(\widehat{C}, \widehat{S})$ add r parameters, r(r-1)/2 parameters are from the the orthogonal matrix Ψ and the freedom to choose any Θ_0 reduces the a total by (n-r)(n-r-1)/2 which yields

$$p_{n+r,n} = n(n-1) + r + r(r-1)/2 - (n-r)(n-r-1)/2 = n(n-1)/2 + rn = (n+r)n - n(n+1)/2.$$

This result corresponds to the difference of (n+r)n parameters of $X \in \mathbb{R}^{(n+r)\times n}$ and the n(n+1)/2 constraints of its column vectors.

Conclusion: Although the parameter count is correct, the above expression is unsuitable for coding because of the 'redundant' matrix Θ_0 . Hence I consider this as an 'open problem'. The following papers have been consulted but did not help to solve the problem:

- X. Sun & Chr. Bischof (1995), A Basis-Kernel Representation of Orthogonal Matrices, SIAM Journal on Matrix Analysis and Applications, Volume 16, Issue 4, Pages: 1184 1196.
- C. C. Paige & M. Wei, History and Generality of the CS Decomposition (1994), Linear Algebra and its Applications, Volume 208-209, Pages: 303 326.