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Motivation: To compute examples for recent research results requires to find column-orthogonal
matrices X ∈ ℝN×n, N > n. The problem sounds quite simple:

Write a MATLAB code, say X=partiso(y,N,n), such that for any column-orthogonal matrix
X ∈ ℝN×n there exists a vector of parameters y ∈ ℝNn−n(n+1)/2 with X =partiso(y,N, n).

It is well-known that N(N −1)/2 real parameters are sufficient to generate any orthogonal matrix
Θ ∈ ℝN×N . The number of parameters is equal to the total number of parameters less the number
of constraints. Θ has N2 parameters and there are N(N + 1)/2 constraints: N from normalizing
the N vectors and N(N − 1)/2 from their mutual orthogonality, hence

pN,N := N2 −N(N + 1)/2 = N(N − 1)/2.

Such an orthogonal matrix can be generated numerically in various ways (for example by Jacobi
rotations) but for rectangular orthogonal matrices the situation is not that straightforward.

Recall that a matrix X ∈ ℝN×n, N ≥ n, is called a partial isometry if XXTX = X (here the
superscript ’T’ denotes transposition). In particular we have XTX = In and XXT is a projector.

The n column vectors of X are normalized and they are mutually perpendicular. Hence there are

pN,n = Nn− n(n+ 1)/2

real parameters y ∈ ℝpN,n . The question is: given y, how to generate X ?

Special Case - n divides N : Suppose N = nm and consider the partition X =

[
X1

Y

]
where X1 ∈ ℝn×n. Then XTX = In = XT

1 X1 + Y TY implies X1 = Φ1S1Θ1, Y = ΨC1Θ1, where
S1 = sin(Σ1), C1 = cos(Σ1) for any diagonal matrix Σ, and Φ1,Θ1 ∈ ℝn×n are orthogonal whilst
Ψ ∈ ℝn(m−1)×n is a partial isometry. Let us indicate the number of partitions by writing X = X(m)

then the above reads

X(m) =

[
Φ1S1Θ1

X(m−1)C1Θ1

]
which reveals a recursive formula

X(m−i) =

[
ΦiSiΘi

X(m−1−1)CiΘi

]
.

The recursion ends if i = m− 1 and leads to the following expression:

Xm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1S1Θ1

Φ2S2Θ2C1Θ1

Φ3S3Θ3C2Θ2C1Θ1
...

Φm−2Sm−2Θm−2Cm−3Θm−3 ⋅ ⋅ ⋅C3Θ3C2Θ2C1Θ1

Φm−1Sm−1Θm−1Cm−2Θm−2Cm−3Θm−3 ⋅ ⋅ ⋅C3Θ3C2Θ2C1Θ1

ΦmCm−1Θm−1Cm−2Θm−2Cm−3Θm−3 ⋅ ⋅ ⋅C3Θ3C2Θ2C1Θ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Parameter Count: The above expression consists of 2m − 1 orthogonal matrices Ψi, i =
1, ⋅ ⋅ ⋅ ,m,Θk, k = 1, ⋅ ⋅ ⋅ ,m − 1, which correspond to (2m − 1)n(n − 1)/2 parameters. The pairs
(Sk, Ck), k = 1, ⋅ ⋅ ⋅ ,m− 1, add (m− 1)n parameters for a total of

pnm,n = (2m− 1)n(n− 1)/2 + (m− 1)n = mn2 − n(n+ 1)/2

which corresponds to the difference of the n2m parameters in X(m) and the n(n+ 1)/2 constraints
on its column vectors ( n form normalization and n(n− 1)/2 from the mutual orthogonality).

General Case Finally we address the general case X ∈ ℝN×n. It is sufficient to assume that

N = n+ r with 0 < r < n and hence X =

[
Y
ZT

]
where Y ∈ ℝn×n and Z ∈ ℝr×n. Now we have

XTX = Y TY + ZZT = ΘTC2Θ + ΘTS2Θ = In.

Because rank (Y ) ≤ r we have S = diag
(
Ŝ, 0

)
, C = diag

(
Ĉ, E

)
with Ŝ = diag (sin(�1), ⋅ ⋅ ⋅ , sin(�r)) ,

Ĉ = diag (cos(�1), ⋅ ⋅ ⋅ , cos(�r)) and a diagonal matrix E ∈ ℝ(n−r)×(n−r) such that E2 = In−r. Hence
the result reads

X =

[
Ψdiag

(
Ĉ, In−r

)
Θ

ΦŜΘ̂

]
with the orthogonal matrix Φ ∈ ℝr×r, with Θ̂ := [Ir 0]Θ and E has been absorbed by the
orthogonal matrix Ψ ∈ ℝn×n. Note that we have the freedom to insert any orthogonal matrix
Θ0 ∈ ℝ(n−r)×(n−r) into the first partition:

Ψdiag
(
Ir,Θ

T
0

)
diag

(
Ĉ, In−r

)
diag (Ir,Θ0) Θ.

Parameter Count: The orthogonal matrices Ψ and Θ contribute n(n− 1) parameters, the pair

(Ĉ, Ŝ) add r parameters, r(r − 1)/2 parameters are from the the orthogonal matrix Ψ and the
freedom to choose any Θ0 reduces the a total by (n− r)(n− r − 1)/2 which yields

pn+r,n = n(n−1)+r+r(r−1)/2− (n−r)(n−r−1)/2 = n(n−1)/2+rn = (n+r)n−n(n+1)/2.

This result corresponds to the difference of (n+r)n parameters of X ∈ ℝ(n+r)×n and the n(n+1)/2
constraints of its column vectors.

Conclusion: Although the parameter count is correct, the above expression is unsuitable for
coding because of the ’redundant’ matrix Θ0. Hence I consider this as an ’open problem’. The
following papers have been consulted but did not help to solve the problem:

∙ X. Sun & Chr. Bischof (1995), A Basis-Kernel Representation of Orthogonal Matrices, SIAM
Journal on Matrix Analysis and Applications, Volume 16 , Issue 4, Pages: 1184 - 1196.

∙ C. C. Paige & M. Wei, History and Generality of the CS Decomposition (1994), Linear
Algebra and its Applications, Volume 208-209, Pages: 303 - 326.
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