Parameterization of Partial Isometries!

Motivation: To compute examples for recent research results requires to find column-orthogonal
matrices X € R¥*" N > n. The problem sounds quite simple:

Write a MATLAB code, say X=partiso(y,N,n), such that for any column-orthogonal matrix
X € RV*™ there exists a vector of parameters y € RN "("+1)/2 with X =partiso(y, N,n).

It is well-known that N (/N —1)/2 real parameters are sufficient to generate any orthogonal matrix
© € RYM*N_ The number of parameters is equal to the total number of parameters less the number
of constraints. © has N? parameters and there are N(N + 1)/2 constraints: N from normalizing
the N vectors and N(N — 1)/2 from their mutual orthogonality, hence

pyy = N?—=N(N+1)/2=N(N —1)/2.
Such an orthogonal matrix can be generated numerically in various ways (for example by Jacobi

rotations) but for rectangular orthogonal matrices the situation is not that straightforward.

Recall that a matrix X € RV*" N > n, is called a partial isometry if XX7X = X (here the
superscript "T” denotes transposition). In particular we have X7 X = I, and X X7 is a projector.

The n column vectors of X are normalized and they are mutually perpendicular. Hence there are
pNn=Nn—n(n+1)/2
real parameters y € RPN, The question is: given y, how to generate X 7

X1
Y
where X; € R™", Then XX = I, = Xle +YTY implies X; = ,5,0,,Y = ¥(C,0,, where
Sy = sin(X;),C) = cos(X;) for any diagonal matrix ¥, and ®1,0; € R"*" are orthogonal whilst
U € RMm=Dx7 5 o partial isometry. Let us indicate the number of partitions by writing X = X (m)
then the above reads

Special Case - n divides N: Suppose N = nm and consider the partition X = [

o ®,5,0,;
Xom = { Xm-1)C161 ]

which reveals a recursive formula

P,5;0;
Km-i = [ Xm-1-1Ci0; } '

The recursion ends if : = m — 1 and leads to the following expression:
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Parameter Count: The above expression consists of 2m — 1 orthogonal matrices W, ¢ =
1,--+,m, 0O,k =1,--- ,m — 1, which correspond to (2m — 1)n(n — 1)/2 parameters. The pairs
(Sk,Cr),k=1,---,m—1, add (m — 1)n parameters for a total of

Pamn = (2m — Dn(n —1)/2+ (m — 1)n = mn? — n(n +1)/2

which corresponds to the difference of the n*m parameters in X,y and the n(n+1)/2 constraints
on its column vectors ( n form normalization and n(n — 1)/2 from the mutual orthogonality).

General Case Finally we address the general case X € RV*". It is sufficient to assume that

Y } where Y € R™*" and Z € R"™*". Now we have

N—n+rwith0<r<nandhenceX—[ZT

X'X =Yy + 277" =0TC*’0+ 075’0 =1,.

Because rank (V) < r we have S = diag <§, O) ,C = diag <6, E) with S = diag (sin(oq), - - -, sin(o,)) ,

C = diag (cos(c), - - -, cos(,)) and a diagonal matrix E € R~ guch that E? = I,,_,. Hence
the result reads R
Udiag (C, In_r) o

X = PN
oS0

with the orthogonal matrix ® € R™" with © := [, 0]© and E has been absorbed by the
orthogonal matrix ¥ € R"*". Note that we have the freedom to insert any orthogonal matrix
Oy € R=x(=) into the first partition:

Wdiag (,,07) diag (6 In_r) diag (I,,09) O.

Parameter Count: The orthogonal matrices ¥ and © contribute n(n — 1) parameters, the pair
(C,S) add r parameters, r(r — 1)/2 parameters are from the the orthogonal matrix ¥ and the
freedom to choose any ©¢ reduces the a total by (n — r)(n —r — 1)/2 which yields

Pntrn =nn—1)+r+r(r—1)/2—(n—-r)(n—r—1)/2=n(n—-1)/24+rn=(n+r)n—n(n+1)/2.

This result corresponds to the difference of (n+7)n parameters of X € R™+)*" and the n(n+1)/2
constraints of its column vectors.

Conclusion: Although the parameter count is correct, the above expression is unsuitable for
coding because of the 'redundant’ matrix ©y. Hence I consider this as an ’open problem’. The
following papers have been consulted but did not help to solve the problem:

e X. Sun & Chr. Bischof (1995), A Basis-Kernel Representation of Orthogonal Matrices, STAM
Journal on Matrix Analysis and Applications, Volume 16 , Issue 4, Pages: 1184 - 1196.

e C. C. Paige & M. Wei, History and Generality of the CS Decomposition (1994), Linear
Algebra and its Applications, Volume 208-209, Pages: 303 - 326.



