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Matrix Polynomials and their LAMs.

Main focus:  Second Order Systems
For context, also look at first- and third- order.

Third Order( ) fqNMDK =+++ 32
sss

Second Order( ) fqMDK =++ 2
ss

First Order( ) fqDK =+ s

All system matrices have dimension (a × a)



Matrix Polynomials and their LAMs.
The general lth-order matrix polynomial has (l+1)
Lancaster Augmented Matrices. (la × la).
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Naming convention:- which system matrix is omitted.



Matrix Polynomials and their LAMs.
2nd Order
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1st Order

[ ]KD = [ ]DK !=



SPTs and Diagonalising SPTs.

For present purposes, a Structure Preserving
Transformation is a transformation which maps
ALL OF the LAMs of some original system to the
corresponding LAMs of some new system
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SPTs and Diagonalising SPTs. 3rd Order
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SPTs and Diagonalising SPTs. 2nd Order
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SPTs and Diagonalising SPTs.
1st Order

[ ] [ ]
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Even 1st order systems have SPTs – though they are trivial.



SPTs and Diagonalising SPTs.

A given SPT is diagonalising if ALL of the
system matrices of the new system are diagonal.

{ }
{ }

{ }
1111

,

0000
,,,,,, NMDKNMDK

TT
RL

!

with                                       diagonal for all s.( )
1

3

1

2

11
NMDK sss +++



SPTs and Diagonalising SPTs.
Most conventional approaches to solving for the
eigenvalues of a matrix polynomial begin with a
Linearisation to transform the problem into a Generalised
Eigenvalue Problem. The LAMs provide a particularly
attractive vector space of linearisations¥.

3rd Order Matrix Poly.( ) 0
32 =+++ vNMDK !!!
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¥ Mackey, D. S.; Mackey, N.; Mehl, C; Mehrmann, V.  ‘Vector Spaces of Linearizations for Matrix Polynomials’
SIAM J. of Matrix Analysis & Applns, 2006, 28(4), pp971-1004



SPTs and Diagonalising SPTs.
Some choices of linearisation are good for
particular problems and some not so good¥.

( ) 0det
32 =+++ NMDK !!!

¥ Higham, N.J.;  Mackey, D.S.; Tisseur, F. & Garvey, S. D.  ‘Scaling, Sensitivity and Stability in the Numerical
Solution of Quadratic Eigenvalue Problems’. IJNME, 73(3).  pp344 – 360

If leading and trailing coefficients are both invertible,
then all LAMs are non-singular. Then

… is equivalent to any one of …

( ) 0det =! MN " ( ) 0det =! DM " ( ) 0det =! KD "

3rd Order



SPTs and Diagonalising SPTs.

( ) 0det
2 =++ MDK !!

… is equivalent to either of …

( ) 0det =! DM " ( ) 0det =! KD "

2nd Order

( ) 0det =+ DK !

… is equivalent to … ( ) 0det =! KD "

1st Order



SPTs and Diagonalising SPTs.

¥ Lancaster, P. & Zaballa, I.  ‘Diagonalisable Quadratic Eigenvalue Problems’.
Mechanical Systems and Signal Processing,  2009, 23(4).  p1134 – 1144

ALL polynomials whose Jordan form is diagonal can be
diagonalised by SPTs (proof – by construction).

ALL 2nd-order polynomials whose Jordan form contains no
Jordan block of dimension>2 are diagonalisable by SPT ¥

ALL 3rd-order polynomials whose Jordan form contains no
Jordan block of dimension>3 are diagonalisable by SPT

ALL lth-order polynomials whose Jordan form contains no
Jordan block of dimension>l are diagonalisable by SPT



SPTs and Diagonalising SPTs.
Two short asides.

(1)  Diagonalising SPTs are not unique.

¥ Chu, M.T. & Del Buono, N.  ‘Total Decoupling for a General Quadratic Pencil. Part II: Structure Preserving
Isospectral Flows’. Journal of Sound & Vibration, 2008, 309(1-2),  pp112-118

(2)  At present, finding a diagonalising SPT (nearly¥)
always begins with solving a generalised EVP

( ) ( )IËUBAU !! "="
R

T

L

Matrices       and       can be chosen as any independent
linear combinations of the LAMs. Finding       and
involves l decoupled problems.

A B

L
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R
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The anti-eigenvalue problem!  Find {e, f, g, h} such that
                                                 well-conditioned.( )KDMNB hgfe +++=



The LAMs of (1 × 1) systems

Third Order( ) fqnsmssdk =+++ 32

The LAMs of this system are …
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The LAMs of (1 × 1) systems
Observe that …
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More concisely: ( ) 0KDMN =+++ kdmn



The LAMs of (1 × 1) systems

Second Order( ) fqmssdk =++ 2

The LAMs of this system are …
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The LAMs of (1 × 1) systems

First Order( ) fqsdk =+

The LAMs of this system are …

[ ]d!=K[ ]k=D

Trivially … [ ] [ ] [ ]0=!+ dkkd

... or more compactly … 0KD =+ kd



Homogeneous Coordinates.

Third Order( ) fqNMDK =+++ 32
sss

Now suppose that a diagonalising SPT exists for some
(a × a) third order system:
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All of the diagonalised LAMs have
above “diagonal-blocks” structure.
The diagonalised system comprises
a decoupled (1×1) systems.



Homogeneous Coordinates
Third Order case  ../cntd.

Let {ki, di, mi, ni} represent the ith diagonal
entries of diagonal 3rd-order system
{K1, D1, M1, N1} respectively.

It is clear that

( )( ) 3kerdim
1111
!+++ KDMN

iiii
kdmn

IF        and          invertible, it follows instantly that

( )( ) 3kerdim
0000
!+++ KDMN

iiii
kdmn
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Homogeneous Coordinates.
Theorem about the eigenvalues of 3rd Order systems
If {K, D, M, N} are the matrices of a 3rd-order system which is
diagonalisable by SPE, then these two statements are equivalent

( ) 3,2,10det
32

==+++ iforiii NMDK !!!

( )( ) 3kerdim

where

3,2,10
32

=+++

==+++

KDMN kdmn

ifornmdk iii !!!

The “IF” condition is probably unnecessary – it facilitates proof.



Homogeneous Coordinates.

Second Order( ) fqMDK =++ 2
ss

Now suppose that a diagonalising SPT exists for some
(a × a) second order system:
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All three diagonalised LAMs have
above “diagonal-blocks” structure.

The diagonalised system comprises
a decoupled (1×1) systems.



Homogeneous Coordinates
Second-Order case  ../cntd.

Let {ki, di, mi} represent the ith diagonal
entries of diagonal 2nd-order system
{K1, D1, M1} respectively.

It is clear that

( )( ) 2kerdim
111
!++ KDM

iii
kdm

IF        and          invertible, it follows instantly that

( )( ) 2kerdim
000
!++ KDM

iii
kdm
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¥ Abuazoum, L. & Garvey, S.D.  ‘Eigenvalue and Eigenvector Derivatives using
Structure Preserving Equivalences’. To Appear J. of Sound & Vibration,



Homogeneous Coordinates.
Theorem about the eigenvalues of 2nd Order systems
If {K, D, M} are the matrices of a 2nd-order system which is
diagonalisable by SPE, then these two statements are equivalent

( ) 2,10det
2

==++ iforii MDK !!

( )( ) 2kerdim

where

2,10
2

=++

==++

KDM kdm

iformdk ii !!

The “IF” condition is probably unnecessary – it facilitates proof.



Homogeneous Coordinates.
The extension to 1st Order systems is obvious

These two statements are equivalent

( ) 0det =+ DK !

( )( ) 1kerdim

where

0

=+

=+

KD kd

dk !



Homogeneous Coordinates.
Scaling of the homogeneous coordinates:
Without any loss of generality, we can assert for 3rd-order systems
that the homogeneous coordinates {k, d, m, n} representing a triple
of eigenvalues for the system will be scaled according to:
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A hyper-sphere providing double-cover for the eigenvalues.



Homogeneous Coordinates.
Scaling of the homogeneous coordinates:
Without any loss of generality, we can assert for 2nd-order systems
that the homogeneous coordinates {k, d, m} representing a pair of
eigenvalues for the system will be scaled according to:
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A sphere providing double-cover for the eigenvalues.
A pair of real angles could be used to represent the pair of
eigenvalues (but better to retain three coordinates with one constraint?)



Homogeneous Coordinates.
Scaling of the homogeneous coordinates:
Without any loss of generality, we can assert for 1st-order systems
that the homogeneous coordinates {k, d} representing a single
eigenvalue for the system will be scaled according to:
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A single real angle is used to represent the eigenvalue.



Eigenvectors with the Homog. Coords.
Second Order( ) fqMDK =++ 2

ss

Given that {k, d, m} characterising a pair of eigenvalues
the corresponding eigenvectors are represented by
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Two REAL vectors here {uR, vR} of length a.
(Matrices {K, D, M} are all (a × a)).



Eigenvectors with the Homog. Coords.
Second Order  ../cntd( ) fqMDK =++ 2
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The eigenvectors are equally-well represented by
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Algorithms based on pairs of vectors {uR, vR} (or sets of
these pairs) would seem to be possible.

The pair of columns above spans the same space of a pair
of eigenvectors of a linstn corresponding to …   {k, d, m}.



Eigenvectors with the Homog. Coords.
Second Order  ../cntd( ) fqMDK =++ 2
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Another view of the (SPE) eigenvectors …
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Eigenvectors with the Homog. Coords.
Second Order  ../cntd( ) fqMDK =++ 2

ss

Vector uR looks like a “privileged member” of the space
[uR, vR].  Is it?

No.   The concept of an automorphic SPT applies.
Choose scalars {f, g} such that (f2 – g2(d2/4 – km)) = 1.
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Eigenvectors with the Homog. Coords.
Vector uR looks like a “privileged member” of the space
[uR, vR].  Is it?      …/cntd.     (NO)
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Vectors {u'R, v'R} are distinct from {uR, vR}.
Vector u'R can be any element of the subspace [uR, vR].



An Algorithm.

Preliminary remark: if we can find a pair of eigenvalues
(represented by {k, d, m}) and a corresponding pair of
eigenvectors (represented by [uR, vR], then we have¥ a
method by which the QEP can be deflated.

¥ Tisseur, F.; Garvey, S.D. & Munro, C. ‘Deflating Quadratic Matrix Polynomials with Structure
Preserving Transformns’ Submitted to LAA, (special issue in honour of P. Stewart)



An Algorithm.

( )KDMX kdm ++=:

(1) Choose an arbitrary triple {k, d, m} defining a point on the
sphere. We will find a pair of eigenvalues at a “nearby” point.

(2) Form                                     and use                    several times
(with orthonormalisation). Also                           several times.
wL and wR are (2a x 2)

(3) Split wL into 4 a-vectors and use SVD to find 2 orthognormal
vectors, {uL, vL} which “nearly” span the space. Same for wR.

(4) Create a (2 x 2) system, {K2×2, D2×2, M2×2}, by projection.

(5)  Find its closest {k, d, m} to the original triple.   GOTO 2.
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wXw
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wXw
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RR
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LL
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CONCLUSION.

A homogeneous coordinates  definition is proposed for the
eigenvalues of quadratic eigenvalue problems (in pairs) &
for eigenvalues of cubic eigenvalue problems (in triples).

This definition uses the complete set of (l+1) LAMs for a
matrix polynomial of order l and it is based on what linear
combinations of these LAMs have a kernel of dimension l.

A crude algorithm is outlined for finding a single “set” of
eigenvalues.



% --- demo_hc ---
% This script illustrates the use of homogeneous coordinates
% for discovering a pair of eigenvalues from the QEP.
% -----------------------------------------------------------------------

% --- #1  First define the system matrices, {K0, D0, M0}.
K0 = [   125   20   -10    15  ;
          30  285     5   -11  ;
         -12    0   300    50  ;
         -14    4    20   200  ];

D0 = [    10  -20     0     1  ;
         -20    5     2     0  ;
           0   -2     6   -10  ;
           1    0    10     8  ];

M0 = [    30    0    -5     0  ;
           0   10     2     0  ;
          -5    2    20   -10  ;
           0    0   -10    50  ];

ZN = zeros(size(K0)); IN = eye(size(K0));
N  = size(K0,1);
K0, pause;         D0, pause;          M0, pause;

% --- Set up the LAMs for this matrix polynomial.
M__0 = [ ZN  K0; K0  D0];
D__0 = [ K0  ZN; ZN -M0];
K__0 =-[ D0  M0; M0  ZN];

% --- Now prepare to run an iterative search for a pair of eigenvalues
%     (together with the left and right eigenvectors).
irng = (1:N);      jrng = irng+N;      krng = [(2*N-1); 2*N];
Z2   = zeros(2,2); I2   = eye(2,2);

disp(' '); disp(' ');
disp(' * * * Algorithm for finding a pair of QEP roots * * * ');
disp(' '); disp(' ');

disp(' Enter a triple of numbers in the order {k, d, m} to indicate target ');
disp(' pair of eigs. Note: these need not be normalised eg. { 995  110  20 }');
disp('  ');
ktt = input(' Enter target value for <k> : ');
dtt = input(' Enter target value for <d> : ');
mtt = input(' Enter target value for <m> : ');

tx = sqrt(ktt^2 + dtt^2 + mtt^2);      ktt = ktt/tx;
dtt = dtt/tx;                          mtt = mtt/tx;

APPENDIX:
% ---
igo = 1;  istep=0;
SVress_reco = zeros(0,6);   % An array of "residual" SVs.
while (igo==1)

    % --- Now form the <target> X and SVD it.
    X = mtt*M__0 + dtt*D__0 + ktt*K__0;
    [U0,S0,V0] = svd(X);     SingVals0 = diag(S0);

    % --- Extract the vectors corresponding to smallest two singular values.
    uv__L = U0(:, krng );    uv__R = V0(:, krng );

    % --- Find two real vectors dominating the four in UV__.
    uv4L  = [ uv__L(irng,1)  uv__L(irng,2)  uv__L(jrng,1)  uv__L(jrng,2) ];
    uv4R  = [ uv__R(irng,1)  uv__R(irng,2)  uv__R(jrng,1)  uv__R(jrng,2) ];
    [U1L,S1L] = svd(uv4L);   [U1R,S1R] = svd(uv4R);
    SingVals1L = diag(S1L);
    SingVals1R = diag(S1R);
    tx = [ SingVals0(krng)    ;
           SingVals1L([3; 4]) ;
           SingVals1R([3; 4]) ];

    % --- Project the matrices into this very reduced space.
    uvL = U1L(:,[1 2]);    uvR = U1R(:,[1 2]);
    Kred = uvL.'*K0*uvR;   Dred = uvL.'*D0*uvR;    Mred = uvL.'*M0*uvR;

    % --- Determine an improved estimate of an "eigenvalue" now.
    CM = [ Z2  I2;  (-Mred\Kred)  (-Mred\Dred) ];  rts2 = eig(CM);
    pair0 = [ ktt; dtt; mtt ];         % Store existing <approx> {k,d,m}.
    pair0 = pair0 / sqrt(pair0.'*pair0);    % Normalise <pair0>.
    pair1 = real([(rts2(1)*rts2(2)); -(rts2(1)+rts2(2)); 1 ]);
    pair1 = pair1 / sqrt(pair1.'*pair1);    % Normalise <pair1>.
    pair2 = real([(rts2(3)*rts2(4)); -(rts2(3)+rts2(4)); 1 ]);
    pair2 = pair2 / sqrt(pair2.'*pair2);    % Normalise <pair2>.
    tz = abs([ (pair0'*pair1)  (pair0'*pair2)]);
    if (tz(1) > tz(2)), pair3=pair1; else pair3=pair2; end

    % --- Now "update" the "eigenvalue".
    pair_new = pair3 / sqrt(pair3'*pair3);
    disp(pair_new');
    ktt = pair_new(1);       dtt = pair_new(2);       mtt = pair_new(3);

    istep = istep+1;         ty = tx.'*tx;
    disp([' Step # ' int2str(istep) ': vector residuals = ' num2str(ty) ]);
    pause(0.1);
    if (ty < 1.0E-25), igo=0; end

end

disp(' * * * ALGORITHM complete * * * ');
disp(' The {k,d,m} values extracted are (/100) : ');
disp([ num2str(ktt*100) ' : ' num2str(dtt*100) ' : ' num2str(mtt*100) ])
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