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Matrix Polynomials and their LAMs.

Main focus: Second Order Systems
For context, also look at first- and third- order.

(K + SD)] =f First Order

All system matrices have dimension (a x a)



Matrix Polynomials and their LAMs.

The general 1”-order matrix polynomial has (I1+1)
Lancaster Augmented Matrices. (la x la).

0 0 K| 0 K| 0]
N={0 K Di| M=K D| 0
K D M 0 0 -N| 30 Opder
K| 0 0 D M N
D- OE—M—N K=-[IM N 0
0! -N 0 ‘N 0 0

Naming convention:- which system matrix 1s omitted.



Matrix Polynomials and their LAMs.

20d Order
0 K. | S
Y R [Ki 0 k- [P M
K D, — o -M ‘M0
15t Order
D-|K | K-f-D

Naming convention:- which system matrix 1s omitted.




SPT's and Dzagonalising SPTs.

For present purposes, a Structure Preserving
Transformation 1s a transformation which maps
ALL OF the LAMs of some original system to the
corresponding LAMs of some new system




31 Order

SPT's and Dzagonalising SPTs.




SPT's and Diagonalising SPTs. ~1d Order

IF T, andT; both invertible, then this SPT 1s a
Structure Preserving Equivalence (SPE).



SPT's and Dzagonalising SPTs.
15t Order

Even 1%t order systems have SPTs — though they are trivial.



SPT's and Dzagonalising SPTs.

A given SPT 1s diagonalising 1f ALL of the
system matrices of the new system are diagonal.

e Te
{[(O9DO9MO9NO}: ﬁ<19D19M19N1}

with (K1 +sD, +5°M, + s?’Nl) diagonal for all s.



SPT's and Dzagonalising SPTs.

Most conventional approaches to solving for the
eigenvalues of a matrix polynomial begin with a
Linearisation to transform the problem into a Generalised
Eigenvalue Problem. The LAMs provide a particularly
attractive vector space of linearisations®.

(K. 0 0] [[ZD M SN|[v] [0
..... Jee e

0 -M -N[-2[I-M -N 0 [[[vA]|=]0
\OE—N o] -~ 0 o fva] o

¥ Mackey, D. S.; Mackey, N.; Mehl, C; Mehrmann, V. ‘Vector Spaces of Linearizations for Matrix Polynomials’
SIAM J. of Matrix Analysis & Appins, 2006, 28(4), pp971-1004



SPT's and Dzagonalising SPTs.

Some choices of linearisation are good for
particular problems and some not so good®.

If leading and trailing coefficients are both invertible,
then all LAMs are non-singular. Then

det(K + AD+ M+ AN )=0 3" Order

... 1s equivalent to any one of ...
- — N
det(N-AM)=0  det(M-AD)=0 det(D-AK)=0

¥ Higham, N.J.; Mackey, D.S.; Tisseur, F. & Garvey, S. D. ‘Scaling, Sensitivity and Stability in the Numerical
Solution of Quadratic Eigenvalue Problems’. IUNME, 73(3). pp344 — 360



SPT's and Dzagonalising SPTs.

det(K + AD)=0 I* Order
... 1s equivalent to ... det(L) — AK)= 0



SPT's and Dzagonalising SPTs.

ALL I™-order polynomials whose Jordan form contains no
Jordan block of dimension>l are diagonalisable by SPT

¥ Lancaster, P. & Zaballa, |I. ‘Diagonalisable Quadratic Eigenvalue Problems’.
Mechanical Systems and Signal Processing, 2009, 23(4). p1134 — 1144



SPT's and Dzagonalising SPTs.

Two short asides.

The anti-eigenvalue problem! Find {e, f, g, h} such that
B=(N+/M+gD+hiK) Wwell-conditioned.

¥ Chu, M.T. & Del Buono, N. ‘Total Decoupling for a General Quadratic Pencil. Part |l: Structure Preserving
Isospectral Flows'. Journal of Sound & Vibration, 2008, 309(1-2), pp112-118



The LAMs of (1 x 1) systems

0 0 k| 0 ki 07
N=l0 k d' M=k d| 0
K d m! 0 0!-n
kio O (d mon
D=(0!-m =-n K=-|im n 0
0)-n 0 h 0 0




The LAMs of (1 x 1) systems
Third Order

More concisely: (nﬂ +mM +dD + kK)= 0



The LAMs of (1 x 1) systems

... or more compactly ... mM+dD+kK =0



The LAMs of (1 x 1) systems

... or more compactly ... dD+kK =0



Homogeneous Coordinates.

T,'K, T, =K, )

T,'D, T, =D,

T,'M, T, =M,

T,'N, T, =N,

_/

NN
INININ
NN

All of the diagonalised LAMs have
above “diagonal-blocks” structure.
The diagonalised system comprises
a decoupled (1x1) systems.




Homogeneous Coordinates
Third Order case ../cntd. B

Let {k, d;, m,, n.} represent the i diagonal

{K,, D,, M, N,} respectively.

entries of diagonal 3"-order system \\

It 1s clear that

dim(ker(pl.N1 +m M, +d D, + kK, ))z 3
IF T, and T, invertible, it follows instantly that

dim(ker(()i& +mM, +d,D, + ki&))z 3

NN N
NN

NI
Il

N N N
L




Homogeneous Coordinates.

Theorem about the eigenvalues of 3™ Order systems

If {K, D, M, N} are the matrices of a 3"-order system which is
diagonalisable by SPE, then these two statements are equivalent

et +AD+A°M+A'N)0  for i=12.3

k+Ad+A’m+A ' n=0 for i=123
where
dim(ker(nN + mM + dD + kK ))=3

The “IF” condition is probably unnecessary — it facilitates proof.



Homogeneous Coordinates.

TLTKO TR = K1

T,'D, T, =D,

TLTMO TR = M1

NN
NN

All three diagonalised LAMSs have
above “diagonal-blocks” structure.

The diagonalised system comprises
a decoupled (1x1) systems.



Homogeneous Coordinates

Second-Order case ../cntd. = .
N N
Let {k, d., m;} represent the i diagonal \ \
entries of diagonal 2"d-order system
{K,, D,, M,} respectively. \\ \\
It 1s clear that = -

dim (kerp, M, +d,D, + kK, ) 2
IF T, and T, invertible, it follows instantly that

dimferln, M, +d, D, + £ K, )l 2

¥ Abuazoum, L. & Garvey, S.D. ‘Eigenvalue and Eigenvector Derivatives using
Structure Preserving Equivalences’. To Appear J. of Sound & Vibration,



Homogeneous Coordinates.

Theorem about the eigenvalues of 2"¢ Order systems

If {K, D, M} are the matrices of a 2"-order system which is
diagonalisable by SPE, then these two statements are equivalent

det(+AD+AM)=0  for i=12

k+Ad+A’m=0 for i=172
where
dim(ker(mM + dD + kK ))= 2

The “IF” condition is probably unnecessary — it facilitates proof.



Homogeneous Coordinates.

The extension to 15 Order systems 1s obvious

These two statements are equivalent

det(K + )LD)= 0

k+Ad =0
where
dim(ker(dD + kK ))=1




Homogeneous Coordinates.

Scaling of the homogeneous coordinates:

Without any loss of generality, we can assert for 3"%-order systems
that the homogeneous coordinates {k, d, m, n} representing a triple
of eigenvalues for the system will be scaled according to:

2 2 2 2

k d m n
— | 4| — +|— +|—| =1

k ref dref m ref Hn ref

A hyper-sphere providing double-cover for the eigenvalues.



Homogeneous Coordinates.

Scaling of the homogeneous coordinates:

Without any loss of generality, we can assert for 2"d-order systems
that the homogeneous coordinates {k, d, m} representing a pair of
eigenvalues for the system will be scaled according to:

2 2 2

k d m
— | +|— | +|—| =1
k ref dref m ref

A sphere providing double-cover for the eigenvalues.

A pair of real angles could be used to represent the pair of
eigenvalues (but better to retain three coordinates with one constraint?)



Homogeneous Coordinates.

Scaling of the homogeneous coordinates:

Without any loss of generality, we can assert for 1%t-order systems
that the homogeneous coordinates {k, d} representing a single
eigenvalue for the system will be scaled according to:

2 2

k d
AT P [
kref dref

A circle providing double-cover for the eigenvalues.

A single real angle 1s used to represent the eigenvalue.



Ezgenvectors with the Homog. Coords.
é +sD + szM)l f Second Order

Given that {k, d, m} characterising a pair of eigenvalues
the corresponding eigenvectors are represented by

0 K] '(u 1dVR) (-mv,) 1[0 k71"
K D| (v,) (u,+1adv,)||k d]

K0 "(u ldVR) (-mv,) [k 071"
B [0 -M|| (kv,) (llR+%dVR)__O —m]
[-D -M] '(u 1a’VR) (-mv,) -d -m]"
_[—M 0 | (kv,) (uR ldVR) —m O}
Two REAL vectors here {u,, v,} of length a.
(Matrices {K, D, M} are all (a x a)).




Eagenvectors with the Homog. Coords.
(K+sD+sM )y =1 Second Order ../cntd

The eigenvectors are equally-well represented by
m
| o
~ 0
_ [0

The pair of columns above spans the same space of a pair
of eigenvectors of a lins*? corresponding to ... {k, d, m}.

(uR -7 dv, ) (_ my p )
(kv,)  ug+1av,)

K 0 -D -M

0 -M

0 K
K D

+d +k

Algorithms based on pairs of vectors {u,, v} (or sets of
these pairs) would seem to be possible.



Eagenvectors with the Homog. Coords.
(K+sD+sM )y =1 Second Order ../cntd

Another view of the (SPE) eigenvectors ...

(uL_%dVL) (_mVL) 170 K -(uR_%dVR) (_mVR) 1 [0 &k
[ (kv,)  (, +1dv,) [K D|| (ve)  (e+iavy)| [ d]

(w,-tdv,) (mv,) T[K 0@, -tdv,) (mvy) ] [k 0
[ (kv,) (uL+;de)] 0 -M|| (vy)  (@e+idvy)| |0 —m}
[(uL—;de) (—va))}T [D M} [(uR—;dvR) (—va))]=[d m]

(v,) G +dav)| (M 0] | Gv,)  (u+idv,

m 0



Eagenvectors with the Homog. Coords.
(K+sD+sM )y =1 Second Order ../cntd

Vector u, looks like a “privileged member” of the space
[ug, vp]. Is1t?

No. The concept of an automorphic SPT applies.
Choose scalars {f, g} such that (f* — g*(d*/4 — km)) = 1.

(r-+gd) (-gm) 170 k)[(f-1gd) (-gm) ] [0 &
(ek)  (r+tgd) [k d|| (k) (f+igd)| |k d]
(r-1gd) (am) 1k 0(f-%gd) (-am) ] [k 0]

(ek)  (f+igd) |0 -m]| (k) (f+igd) [0 -m
etc.




Ezgenvectors with the Homog. Coords.

-(uR_%dVR) (_mVR) “(f_%gd) (—gm) -
(kVR) (uR+%dVR)__ (gk) (f"'zgd)

-(“'R_%dV'R) (_ va)
(kv'e)  We+tav'y)

Vectors {u'y, v',} are distinct from {ug, vp}.

Vector u', can be any element of the subspace [uy, vz].



An Algorithm.

Preliminary remark: 1if we can find a pair of eigenvalues
(represented by {4, d, m}) and a corresponding pair of
eigenvectors (represented by [u,, v,], then we have* a
method by which the QEP can be deflated.

¥ Tisseur, F.; Garvey, S.D. & Munro, C. ‘Deflating Quadratic Matrix Polynomials with Structure
Preserving Transformns’ Submitted to LAA, (special issue in honour of P. Stewart)



An Algorithm.

(1) Choose an arbitrary triple {k, d, m} defining a point on the
sphere. We will find a pair of eigenvalues at a “nearby” point.

(2) Form X:= (mM +dD + kK) and usew, = X 'w, several times
(with orthonormalisation). Also w, =X 'w, several times.
w, and w, are (2a x 2)

(3) Split w; into 4 a-vectors and use SVD to find 2 orthognormal
vectors, {u,, v, } which “nearly” span the space. Same for wy,.

(4) Create a (2 x 2) system, {K,,,, D,,,, M,,,}, by projection.

K., = [“L Vi ]K[uR VR]
(5) Find 1ts closest {k, d, m} to the original triple. GOTO 2.



CONCLUSION.

A homogeneous coordinates definition 1s proposed for the
eigenvalues of quadratic eigenvalue problems (in pairs) &
for eigenvalues of cubic eigenvalue problems (in triples).

This definition uses the complete set of (I+1) LAMs for a
matrix polynomial of order | and it is based on what linear
combinations of these LAMs have a kernel of dimension I.

A crude algorithm 1s outlined for finding a single “set” of
eigenvalues.



APPENDIX: Demonstration of the Algorithm

in MATLAB (3-Point Font!

% --- demo_hc ---
% This script illustrates the use of homogeneous coordinates g ——=
% for discovering a pair of eigenvalues from the QEP. igo = 1; 1istep=0;
% SVress_reco = zeros(0,6); % An array of "residual" SVs.
while (igo==1)
% #1 First define the system matrices, {KO0, DO, MO}.
KO = [ 125 20 -10 15 ; % --- Now form the <target> X and SVD it.
30 285 5 -11 X = mtt*M 0 + dtt*D_ 0 + ktt*K 0;
-12 0 300 50 ; [U0,S0,V0] = svd(X); SingVals0 = diag(S0);
-14 4 20 200 1;
% --- Extract the vectors corresponding to smallest two singular values.
DO = [ 10 -20 0 1 uv__ L = UO0(:, krng ); uv__ R = V0(:, krng );
-20 5 2 0
0 -2 6 -10 ; % --- Find two real vectors dominating the four in UV__ .
1 0 10 1 uv4L = [ uv_ L(irng,1) wuv_ L(irng,2) wuv_ L(jrng,1) wuv_ L(jrng,2) ];
uv4R = [ uv_ R(irng,1) wuv_ R(irng,2) wuv_ R(jrng,1) wuv_ R(jrng,2) 1I;
MO = [ 30 0 -5 o [UlL,S1L] = svd(uv4l); [UIR,S1R] = svd(uv4R);
0 10 2 o SingValslL = diag(S1L);
-5 2 20 -10 ; SingValslR = diag(S1R);
0 0 -10 50 1; tx = [ SingValsO (krng) ;
SingValslL([3; 41) ;
ZN = zeros(size(K0)); IN = eye(size(K0)); SingValslR([3; 4]) 1;
N = size(K0,1);
KO0, pause; DO, pause; MO, pause; % —--- Project the matrices into this very reduced space.
uvlL = UlL(:,[1 2]); uvR = ULlR(:,[1 21);
% --- Set up the LAMs for this matrix polynomial. Kred = uvL.'*K0*uvR; Dred = uvL.'*D0*uvR; Mred = uvL.'*M0O*uvR;
M 0= [ ZN KO; KO DOJ;
D 0= [ KO 2ZN; ZN -MO]; % --- Determine an improved estimate of an "eigenvalue" now.
K_0 =-[ DO MO; MO ZNJ]; CcM = [ 22 12; (-Mred\Kred) (-Mred\Dred) ]; rts2 = eig(CM);
pair0 = [ ktt; dtt; mtt ]; % Store existing <approx> {k,d,m}.
pair0 = pair0 / sqrt(pair0.'*pair0); % Normalise <pair0>.
% --- Now prepare to run an iterative search for a pair of eigenvalues pairl = real([(rts2(1)*rts2(2)); -(rts2(l)+rts2(2)); 1 1);
% (together with the left and right eigenvectors). pairl = pairl / sqrt(pairl.'*pairl); % Normalise <pairl>.
irng = (1:N); jrng = irng+N; krng = [(2*N-1); 2*N]; pair2 = real([(rts2(3)*rts2(4)); -(rts2(3)+rts2(4)); 1 1);
zZ2 = zeros(2,2); 12 = eye(2,2); pair2 = pair2 / sqrt(pair2.'*pair2); % Normalise <pair2>.
tz = abs([ (pailr0'*pairl) (pair0'*pair2)]);
disp(' '"); disp(' '); if (tz(l) > tz(2)), pair3=pairl; else pair3=pair2; end
disp(' * * * Algorithm for finding a pair of QEP roots * * * ');
disp(' '"); disp(' '); % —--- Now "update" the "eigenvalue".
pair new = pair3 / sqrt(pair3'*pair3);
disp(' Enter a triple of numbers in the order {k, d, m} to indicate target '); disp(pair_new');
disp (' pair of eigs. Note: these need not be normalised eg. { 995 110 20 }'); ktt = pair_new(1); dtt = pair _new(2); mtt = pair new(3);
disp(' ');
ktt = input (' Enter target value for <k> : '); istep = istep+l; ty = tx.'*tx;
dtt = input(' Enter target value for <d> : '); disp([' Step # ' int2str(istep) ': vector residuals = ' num2str(ty) ]);
mtt = input (' Enter target value for <m> : '); pause (0.1) ;
if (ty < 1.0E-25), igo=0; end
tx = sqrt(ktt*2 + dtt"2 + mtt" 2); ktt = ktt/tx;
dtt = dtt/tx; mtt = mtt/tx; end
disp(' * * * ALGORITHM complete * * * ');
disp(' The {k,d,m} values extracted are (/100) : ');
disp ([ num2str(ktt*100) ' : ' num2str(dtt*100) ' : ' num2str (mtt*100) ])




