

Hermitian Matrix Polynomials with Real Eigenvalues

Françoise Tisseur School of Mathematics The University of Manchester

ftisseur@ma.man.ac.uk http://www.ma.man.ac.uk/~ftisseur/

> Joint work with Maha Al-Ammari MOPNET II, March 29-30, 2010

Hermitian Eigenvalue Problem

Consider

$$Ax = \lambda x, \qquad A = A^* \in \mathbb{C}^{n \times n}$$

Many desirable properties. In particular,

- real eigenvalues,
- diagonalizable by congruences,
- well-conditioned eigenvalues.
- ► Variety of special algorithms.

Hermitian Eigenvalue Problem

Consider

$$Ax = \lambda x, \qquad A = A^* \in \mathbb{C}^{n \times n}$$

Many desirable properties. In particular,

- real eigenvalues,
- diagonalizable by congruences,
- well-conditioned eigenvalues.
- ► Variety of special algorithms.

What are the closest analogues of this class of problems for Hermitian matrix polynomials?

Hermitian Eigenproblem

We consider

• Generalized eigenvalue problem: $L(\lambda)x = 0$,

$$L(\lambda) = \lambda A - B$$
, $A = A^*$, $B = B^*$.

▶ Polynomial eigenvalue Problem: $P(\lambda)x = 0$,

$$P(\lambda) = \sum_{j=0}^{m} \lambda^j A_j, \qquad A_j = A_j^*, \quad j = 0: m.$$

- *mn* e'vals, all finite when *A_m* nonsingular,
- ∞ and 0 e'vals when A_m and A_0 singular, resp.,
- $\Lambda(P)$ is symmetric with respect to the real axis.

Hermitian Pencils/Polynomials

The following are known to have real e'vals:

- definite pencils,
- definitizable pencils,
- overdamped quadratics,
- gyroscopically stabilized quadratics
- hyperbolic matrix polynomials,
- quasihyperbolic matrix polynomials,
- definite matrix polynomials.

Another common feature: their e'vals are all of definite type.

Eigenvalue Types

A finite real e'val λ_0 of $P(\lambda)$ Hermitian is of

- positive type if $x^*P'(\lambda_0)x > 0$ for all $0 \neq x \in \ker P(\lambda_0)$,
- negative type if $x^* P'(\lambda_0) x < 0$ for all $0 \neq x \in \ker P(\lambda_0)$.
- **definite type** if it is either of positive or negative type.

Eigenvalue Types

A finite real e'val λ_0 of $P(\lambda)$ Hermitian is of

- positive type if $x^*P'(\lambda_0)x > 0$ for all $0 \neq x \in \ker P(\lambda_0)$,
- negative type if $x^* P'(\lambda_0) x < 0$ for all $0 \neq x \in \ker P(\lambda_0)$.
- definite type if it is either of positive or negative type.

Examples

- Simple e'vals are always of definite type.
- The pencil $L(\lambda) = \lambda \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} -\alpha & 0 \\ 0 & \alpha \end{bmatrix}$ has a semisimple e'val $\lambda_0 = \alpha$ with e'vecs $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and

$$e_1^* L'(\alpha) e_1 = 1, \quad e_2^* L'(\alpha) e_2 = -1.$$

 $\Rightarrow \lambda_0 = \alpha$ is of mixed type.

Eigenvalue Type at ∞

$$\operatorname{rev} P(\lambda) := \lambda^m P(1/\lambda) = \lambda^m A_0 + \lambda^{m-1} A_1 + \cdots + \lambda A_{m-1} + A_m.$$

 $\lambda = \infty$ is an e'val of $P(\lambda)$ iff 0 is an e'val of rev $P(\lambda)$. Can show that

$$x^*P'(\lambda_0)x = -\lambda_0^{m-2}x^*(\operatorname{rev} P)'(1/\lambda_0)x, \quad \lambda_0 \neq 0.$$

Eigenvalue Type at ∞

$$\operatorname{rev} \mathcal{P}(\lambda) := \lambda^m \mathcal{P}(1/\lambda) = \lambda^m \mathcal{A}_0 + \lambda^{m-1} \mathcal{A}_1 + \cdots + \lambda \mathcal{A}_{m-1} + \mathcal{A}_m.$$

 $\lambda = \infty$ is an e'val of $P(\lambda)$ iff 0 is an e'val of rev $P(\lambda)$. Can show that

$$x^* P'(\lambda_0) x = -\lambda_0^{m-2} x^* (\operatorname{rev} P)'(1/\lambda_0) x, \quad \lambda_0 \neq 0.$$

 $\lambda_0 = \infty$ as an e'val of *P* is of

- positive type if $x^*A_{m-1}x < 0$ for all $0 \neq x \in \ker A_m$,
- negative type if $x^*A_{m-1}x > 0$ for all $0 \neq x \in \ker A_m$.

Systems of Differential Equations

The solutions to

$$\sum_{j=0}^{m} i^{j} A_{j} \frac{d^{j} u(t)}{dt^{j}} = 0, \quad t \in \mathbb{R},$$

are bounded on $[0, \infty)$ iff $P(\lambda) = \sum_{j=0}^{m} \lambda^{j} A_{j}$, det $(A_{m}) \neq 0$ has real semisimple e'vals.

Solutions remain bounded under small perturbations of A_j iff the e'vals of P are real and of definite type [Gohberg, Lancaster, Rodman 82].

Quasidefinite Matrix Polynomials

Definition (Al-Ammari, T., 10)

A Hermitian matrix polynomial P is quasidefinite if

- $\Lambda(P) \subset \mathbb{R} \cup \{\infty\}$, and
- all e'vals are of definite type.

Quasidefinite Matrix Polynomials

Definition (Al-Ammari, T., 10)

A Hermitian matrix polynomial P is quasidefinite if

- $\Lambda(P) \subset \mathbb{R} \cup \{\infty\}$, and
- all e'vals are of definite type.

Quasidefinite polynomials include

- definite pencils,
- definitizable pencils,
- overdamped quadratics,
- gyroscopically stabilized quadratics,
- hyperbolic matrix polynomials,
- quasihyperbolic matrix polynomials,
- definite matrix polynomials.

Classification of Quasidefinite Polynomials

Definite Pencils $L(\lambda) = \lambda A - B$

 $L(\lambda)$ is **definite** if it satisfies any one of (P1), (P2), (P3).

Theorem

The following are equivalent:

- (P1) $\Lambda(L) \subset \mathbb{R} \cup \{\infty\}$ with all e'vals of definite type and e'vals of +ve type are separated from the e'vals of -ve type.
- (P2) The matrix $L(\mu)$ is definite for some $\mu \in \mathbb{R} \cup \{\infty\}$.
- (P3) For every nonzero vector x, the scalar equation $x^*L(\lambda)x = 0$ has exactly one zero in $\mathbb{R} \cup \{\infty\}$.

Homogeneous Form

$$P(\alpha,\beta) = \sum_{j=0}^{m} \alpha^{j} \beta^{m-j} A_{j}, \qquad L(\alpha,\beta) = \alpha A - \beta B.$$

• E'val λ identified with any pair $(\alpha, \beta) \neq (0, 0)$ s.t. $\lambda = \alpha/\beta$.

λ = 0 represented by (0, β), λ = ∞ represented by (α, 0).
 With α² + β² = 1, have direct correspondence between λ ∈ ℝ ∪ {∞} and (α, β) on unit circle:

Homogeneous Rotation

$$\widetilde{P}(\widetilde{\alpha},\widetilde{\beta})$$
 is obtained from $P(\alpha,\beta)$ by homogenous rotation if
 $G\begin{bmatrix} lpha\\ eta\end{bmatrix} = \begin{bmatrix} \mathbf{c} & \mathbf{s}\\ -\mathbf{s} & \mathbf{c}\end{bmatrix} \begin{bmatrix} lpha\\ eta\end{bmatrix} =: \begin{bmatrix} \widetilde{lpha}\\ \widetilde{eta}\end{bmatrix}, \quad \mathbf{c}, \mathbf{s} \in \mathbb{R}, \quad \mathbf{c}^2 + \mathbf{s}^2 = \mathbf{1}$

and

$$\boldsymbol{P}(\alpha,\beta) = \sum_{j=0}^{m} \alpha^{j} \beta^{m-j} \boldsymbol{A}_{j} = \sum_{j=0}^{m} \widetilde{\alpha}^{j} \widetilde{\beta}^{m-j} \widetilde{\boldsymbol{A}}_{j} := \widetilde{\boldsymbol{P}}(\widetilde{\alpha},\widetilde{\beta}).$$

E'vecs remain the same but e'vals are rotated.

$$\blacktriangleright \widetilde{A}_m = P(c, s).$$

▶ Use rotation G to transform *P* with det(A_m) = 0 or A_m indefinite to \tilde{P} with \tilde{A}_m nonsingular or $\tilde{A}_m > 0$.

Homogeneous Rotation and Types

Let λ_j be an e'val of *P* rotated to λ_j . E'val types are related by:

$$\mathbf{x}^* \widetilde{P}'_{\widetilde{\lambda}}(\widetilde{\lambda}_j) \mathbf{x} = (\mathbf{c} - \lambda_j \mathbf{s})^{m-2} \cdot \mathbf{x}^* P'_{\lambda}(\lambda_j) \mathbf{x}$$
 if $\lambda_j, \widetilde{\lambda}_j$ are finite.

$$c - \lambda_j s = \det \begin{bmatrix} c & \lambda_j \\ s & 1 \end{bmatrix} > 0$$
 if $\lambda_j = (\lambda_j, 1)$ that lies counterclockwise from (c, s) .

Hyperbolic Polynomials $P(\lambda) = \sum_{j=0}^{m} \lambda^{j} A_{j}$

 $P(\lambda) n \times n$ and Hermitian is **hyperbolic** if it satisfies any one of (P1) [Al-Ammari, T. 10], (P2), (P3) [Markus 88].

Theorem

The following are equivalent: (P1) All e'vals are real, finite, of definite type, and s.t. $\lambda_{mn} \leq \cdots \leq \lambda_{(m-1)n+1} < \cdots < \lambda_{2n} \leq \cdots \leq \lambda_{n+1} < \lambda_n \leq \cdots \leq \lambda_1$. negative type positive type $(-1)^{m-1}$ type (P2) There exist $\mu_i \in \mathbb{R} \cup \{\infty\}$ s.t. $\infty = \mu_0 > \mu_1 > \cdots > \mu_{m-1}$, $(-1)^{j}P(\mu_{i}) > 0, \quad j = 0: m-1.$

(P3) $A_m > 0$ and for every nonzero $x \in \mathbb{C}^n$, the scalar equation $x^*P(\lambda)x = 0$ has m distinct real and finite zeros.

Acoustic Fluid-structure Interaction Problem

Consider generalized eigenproblem

$$\omega \begin{bmatrix} \boldsymbol{M}_{\boldsymbol{s}} & \boldsymbol{0} \\ \boldsymbol{M}_{\boldsymbol{f}\boldsymbol{s}} & \boldsymbol{M}_{\boldsymbol{f}} \end{bmatrix} + \begin{bmatrix} \boldsymbol{K}_{\boldsymbol{s}} & -\boldsymbol{M}_{\boldsymbol{f}\boldsymbol{s}} \\ \boldsymbol{0} & \boldsymbol{K}_{\boldsymbol{f}} \end{bmatrix},$$

where $0 < M_s, K_s \in \mathbb{C}^{n \times n}$ and $0 < M_f, K_f \in \mathbb{C}^{m \times m}$. Multiplying 1st block row by $-\omega$ yields Hermitian quadratic

$$oldsymbol{Q}(\omega) = \omega^2 egin{bmatrix} -M_s & 0 \ 0 & 0 \end{bmatrix} + \omega egin{bmatrix} -K_s & M_{fs}^* \ M_{fs} & M_f \end{bmatrix} + egin{bmatrix} 0 & 0 \ 0 & K_f \end{bmatrix}.$$

- Q is not hyperbolic,
- $\operatorname{rev} Q(\omega) = \omega^2 Q(1/\omega)$ is not hyperbolic.
- However, Q is a definite polynomial.

Definitizable Pencils

Definition: An $n \times n$ Hermitian pencil $L(\lambda) = \lambda A - B$ is is **definitizable** if is satisfies any one of (P1), (P2), (P3).

Theorem

The following are equivalent:

- (P1) L has real, finite e'vals of definite type.
- (P2) det(A) \neq 0 and there exists a real polynomial q s.t. Aq($A^{-1}B$) > 0.
- (P3) det(A) \neq 0 and the scalar equation $x^*L(\lambda)x = 0$ has one zero in \mathbb{R} for all e'vecs $x \in \mathbb{C}^n$ of L.

Proofs in [Lancaster, Ye, 93], except (P3).

Saddle Point Problems

Want to solve large linear systems Ax = b with

$$\mathcal{A} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & -\mathbf{C} \end{bmatrix},$$

where $A = A^T \in \mathbb{R}^{n \times n}$, A > 0 and $C = C^T \in \mathbb{R}^{m \times m}$, $C \ge 0$.

A is **indefinite**: it has *n* positive e'vals and rank($C + BA^{-1}B^{T}$) negative e'vals.

Saddle Point Problems

Want to solve large linear systems Ax = b with

$$\mathcal{A} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & -\mathbf{C} \end{bmatrix},$$

where $A = A^T \in \mathbb{R}^{n \times n}$, A > 0 and $C = C^T \in \mathbb{R}^{m \times m}$, $C \ge 0$.

A is **indefinite**: it has *n* positive e'vals and rank($C + BA^{-1}B^{T}$) negative e'vals.

If $\lambda \mathcal{J} - \mathcal{A}$ is definitizable with $\mathcal{J} = \begin{bmatrix} I_n & 0\\ 0 & -I_m \end{bmatrix}$ then there exists a well-define CG method for solving linear systems with $\mathcal{J}\mathcal{A}$ (see [Liesen & Parlett 08]).

 $(\mathcal{J}\mathcal{A} \text{ is } \mathcal{J}q(\mathcal{J}\mathcal{A}) \text{ symmetric for some } q \text{ s.t. } \mathcal{J}q(\mathcal{J}\mathcal{A}) > 0.)$

Hermitian Linearizations

Let
$$\mathbb{L}_1(P) = \left\{ L(\lambda) : L(\lambda)(\Lambda \otimes I_n) = \mathbf{v} \otimes P(\lambda), \ \mathbf{v} \in \mathbb{C}^m \right\},$$

where $\Lambda = [\lambda^{m-1}, \lambda^{m-2}, \dots, 1]^T \in \mathbb{C}^m.$
 $\mathbb{H}(P) := \left\{ L(\lambda) = \lambda \mathbf{A} - \mathbf{B} \in \mathbb{L}_1(P) : \ \mathbf{A}^* = \mathbf{A}, \ \mathbf{B}^* = \mathbf{B} \right\}$
 $= \left\{ \sum_{j=1}^m \mathbf{v}_j(\lambda \mathbf{B}_j - \mathbf{B}_{j-1}), \ \mathbf{v} \in \mathbb{R}^m \right\},$

where B_i is a direct sum of block Hankel matrices.

Almost all pencils in $\mathbb{H}(P)$ are Hermitian linearizations of *P*.

Do they preserve additional properties?

Linearizations and E'val Types

For an eigenpair (λ_0, x) of *P* and $L(\lambda) \in \mathbb{H}(P)$ with vector *v*, we have

$$\boldsymbol{z}^*\boldsymbol{L}'(\lambda_0)\boldsymbol{z} = \boldsymbol{\Lambda}_0^{\mathsf{T}}\boldsymbol{v}\cdot\boldsymbol{x}^*\boldsymbol{P}'(\lambda_0)\boldsymbol{x},$$

where (z, λ_0) is an eigenpair of L, $\Lambda_0 = [\lambda_0^{m-1}, \lambda_0^{m-2}, \dots, 1]^T$.

Linearizations and E'val Types

For an eigenpair (λ_0, x) of *P* and $L(\lambda) \in \mathbb{H}(P)$ with vector *v*, we have

$$z^*L'(\lambda_0)z = \Lambda_0^T \mathbf{v} \cdot \mathbf{x}^* \mathbf{P}'(\lambda_0) \mathbf{x},$$

where (z, λ_0) is an eigenpair of L, $\Lambda_0 = [\lambda_0^{m-1}, \lambda_0^{m-2}, \dots, 1]^T$.

Theorem

- P is quasihyperbolic iff any L ∈ 𝔅(P) is definitizable [Al-Ammari, T., 10].
- P is definite iff P has a definite linearization L ∈ ℍ(P). [Higham, Mackey, T. 09].
- *P* is hyperbolic iff *P* has a definite linearization $\lambda A B \in \mathbb{H}(P)$ with *A* definite.

Diagonalizable Pencils

Hermitian pencils are diagonalizable by congruence iff e'vals belong to $\mathbb{R} \cup \{\infty\}$ and are semisimple (see [Lancaster, Rodman 05]).

- Definite pencils are diagonalizable.
- ► Definitizable pencils are diagonalizable.

Diagonalizable Pencils

Hermitian pencils are diagonalizable by congruence iff e'vals belong to $\mathbb{R} \cup \{\infty\}$ and are semisimple (see [Lancaster, Rodman 05]).

- Definite pencils are diagonalizable.
- Definitizable pencils are diagonalizable.

What can we say about (quasi)hyperbolic and definite matrix polynomials?

Strictly Isospectral Polynomials

P is **isospectral** to \widehat{P} if $\Lambda(P) = \Lambda(\widehat{P})$ with same partial multiplicities.

P and \hat{P} are strictly isospectral if they are isospectral and share the same sign characteristic.

Strictly Isospectral Polynomials

P is **isospectral** to \widehat{P} if $\Lambda(P) = \Lambda(\widehat{P})$ with same partial multiplicities.

P and \hat{P} are strictly isospectral if they are isospectral and share the same sign characteristic.

Let P, \widehat{P} be quasihyperbolic and strictly isospectral and let $L \in \mathbb{H}(P)$, $\widehat{L} \in \mathbb{H}(\widehat{P})$ with vector v.

There exist nonsingular X, \hat{X} s.t.

$$XL(\lambda)X^* = \lambda \begin{bmatrix} I_k & 0\\ 0 & -I_{n-k} \end{bmatrix} - \begin{bmatrix} J_+ & 0\\ 0 & -J_- \end{bmatrix} = \widehat{X}\widehat{L}(\lambda)\widehat{X}^*.$$

 $\widehat{X}^{-1}X$ defines a structure preserving congruence.

Diagonalizable by SPC

Definition: $P(\lambda)$, Hermitian and of degree *m* is **diagonalizable by structure preserving congruence** (SPC) if it is strictly isospectral to a real diagonal matrix polynomial of degree *m*.

- Quasidefinite quadratics are always strictly isospectral to quasidefinite diagonal quadratics.
- Definite matrix polynomial are always strictly isospectral to definite diagonal matrix polynomials.

Diagonalizable by SPC

Definition: $P(\lambda)$, Hermitian and of degree *m* is **diagonalizable by structure preserving congruence** (SPC) if it is strictly isospectral to a real diagonal matrix polynomial of degree *m*.

Theorem (Al-Ammari, T. 10)

An $n \times n$ quasihyperbolic matrix polynomial of degree m is diagonalizable by SPC iff there is a grouping of its e'vals and their types into n subsets of m distinct e'vals, which when ordered have alternating types.

- Quasidefinite quadratics are always strictly isospectral to quasidefinite diagonal quadratics.
- Definite matrix polynomial are always strictly isospectral to definite diagonal matrix polynomials.

Concluding Remarks

- Gave a unified treatment of the many subclasses of Hermitian matrix polynomials with real eigenvalues.
- Identified classes of Hermitian matrix polynomials that are diagonalizable by SPC.
- Results useful in the solution of the inverse problem.
- Investigate analogous results for palindromic and odd/even matrix polynomials.

For paper see:

M. Al-Ammari and F. Tisseur. *Hermitian Matrix Polynomials with Real Eigenvalues of Definite Type. Part I: Classification*, MIMS EPrint 2010.9, The University of Manchester, 2010.