

## Active Vibration Control by the Receptance Method

#### Maryam Ghandchi Tehrani

University of Southampton Institute of Sound and Vibration Building 13, Room 3067 mgt1y09@soton.ac.uk

#### **Research Record**

#### **BSc (Iran 1999-2002)**

*"Vibration Analysis of an Asymmetric Aerofoil Cross-section Turbine blade Using Galerkin's Method"* 

#### **MSc (Liverpool 2003-2004)**

"Vibration Suppression Using Vincent's Circle"

#### PhD (Liverpool 2004-2007)

*"Passive Modification and Active Vibration Control Using the Receptance Method"* 

#### Postdoctoral Research (Liverpool 2007-2009) EPSRC Grant ER/F008724/1

"A New Approach on Active Vibration Suppression"

**Temporary Lectureship (Liverpool 2009-2010)** 

Lectureship (Southampton 2010-present)

#### Introduction

- Background
- Definition of Receptance
- Active Vibration Control by the Receptance Method
- Output Feedback
- State feedback
- Eigenvalue Sensitivity Analysis
- Partial Pole Placement
- Robust Pole Placement
- Active control on Agusta-Westland helicopter W30
- Future research
- Conclusions

## Active Vibration Control of Structures

#### Civil Automotive Aerospace



Active damping bridges between towers





# Active tendon control for bridges

## **Active Vibration Control**

- Limitations in passive modification
  - Difficulty in measuring the rotational degrees of freedom
  - Large and inaccurate structural models (stiffness, mass and damping)
  - Limitation in the form of modification (Symmetry, positive-definite)
  - The rank of modification

#### **Introduction to Receptance Method**

Inverse of the dynamic stiffness matrix, The transfer function between input and output data,

The ratio of two polynomials,

In terms of the eigenvalues and eigenvectors,

$$H(s) = \left(s^2 M + sC + K\right)^{-1}$$

$$\mathbf{x}(\mathbf{s}) = H(\mathbf{s})f(\mathbf{s})$$

$$H(s) = \frac{N(s)}{d(s)}$$

$$H(s) = \sum_{k=1}^{n} \left( \frac{\varphi_k \varphi_k^T}{(s - \lambda_k)} + \frac{\varphi_k^i \varphi_k^{iT}}{(s - \lambda_k^i)} \right)$$

## Active Vibration Control by the Receptance Method

- There is no requirement to know or to evaluate the M, C, K matrices.
- The receptance equations (s) = H(s)f(s) are made complete with a small number of measured force inputs.
- There is no requirement for an observer or for model reduction.
- The method is general and can be applied to any input-output measured data.

## Practical Application of Active Vibration Control by the Receptance Method

- Control forces are applied using actuators (piezo devices, proofmass actuators, electro-hydraulic etc) with power amplifiers. These have dynamics which must be modelled by conventional (matrix) methods.
- Responses are measured using sensors (piezo-strip devices, ICP accelerometers etc). These also have dynamic behavior that must be modelled by the conventional approach.
- Modelling of actuators and sensors is unnecessary by the receptance method. We simply generalise it to the frequency response function between any input and any output – typically voltage input to the power amplifier, voltage output from an ICP device.
- The measured open-loop FRF is a complete model of the systems, including any time delays due to A/D, D/A conversion, integration of accelerometer signals etc.

#### **Output Feedback Control**

1. Mathematical model of the system

$$(s^2 M + sC + K) x(s) = \mathbf{Bu}(s) + p(s)$$
  
 $y(s) = \mathbf{Dx}(s)$ 

2. Control Law

$$u(s) = -(G + sF)y(s)$$

3. Collocated sensor and actuator

$$D = B^{T} \in \Re^{m \times n}$$

$$\left(s^{2}M + sC + K + B \operatorname{diag}\left(g_{i} + sf_{i}\right)B^{T}\right) x(s) = p(s)$$

\_

#### **Pole - Zero Assignment**

$$H(s) = (s^{2}M + sC + K)^{-1}$$
 Receptance Matrix  

$$s^{2}M + sC + K + B \operatorname{diag}(g_{i} + sf_{i}) B^{T}) x(s) = p(s)$$
  

$$(I + H(s) \Delta Z(s) | x(s) = H(s) p(s)$$
  

$$\Delta Z(s) = B \operatorname{diag}(g_{i} + sf_{i}) B^{T}$$
 Active modification

$$x(s) = \left(I + H(s) B diag\left(g_{i} + sf_{i}\right)B^{T}\right)^{-1}H(s) p(s)$$

$$x(s) = \frac{adj \left( I + H(s) B diag \left( g_i + sf_i \right) B^T \right)}{\det \left( I + H(s) B diag \left( g_i + sf_i \right) B^T \right)} H(s) p(s)$$

#### Pole assignment

Natural frequencies given from the denominator characteristic equation.

$$\det\left(I + H\left(\lambda_{j}\right) B \operatorname{diag}\left(g_{i} + \lambda_{j} f_{i}\right) B^{T}\right) = 0; \quad j = 1, 2, \dots, r; \quad r \leq 2n$$

#### Zero assignment

Antiresonances given by the zeros of the numerator matrix terms –The antiresonances are generally different for the different receptance terms.

$$\left[adj\left(I+H\left(\mu_{k}\right)Bdiag\left(g_{i}+\mu_{k}f_{i}\right)B^{T}\right)H\left(\mu_{k}\right)\right]_{pp}=0$$

## Active Vibration Control of the T-Plate Output Feedback









1<sup>st</sup> mode: 42Hz

2<sup>nd</sup> mode: 53Hz

3<sup>rd</sup> mode: 130Hz

#### **Rational Fraction Polynomials**



#### **Pole and Zero Assignment**

![](_page_13_Figure_1.jpeg)

J.E. Mottershead, **M.G. Tehrani**, S. James and Y.M. Ram, Active vibration suppression by pole-zero placement using measured receptances, *Journal of Sound and Vibration*, 311(3-5), 2008, 1391-1408.

#### **Single-Input State Feedback**

$$M\ddot{x}+C\dot{x}+\mathbf{K}\mathbf{x}=bu(t)+p(t)$$

**Control Force** 

$$u(t) = -f^T \dot{x} - g^T x$$

$$\left(s^{2}M+s\left(C+\mathbf{bf}^{T}\right)+\left(K+\mathbf{bg}^{T}\right)\right) x\left(s\right)=p\left(s\right)$$

**Rank-1 Modification** 

#### **State feedback**

Sherman-Morrison Formula (Rank 1 modification)

$$\hat{A}(s) = A(s) + \mathbf{uv}^{T}$$
$$\hat{A}^{-1}(s) = A^{-1}(s) - \frac{A^{-1}(s)\mathbf{uv}^{T}A^{-1}(s)}{1 + v^{T}A^{-1}(s)u}$$
$$A^{-1} = H \quad u = b \quad v = (g + sf)$$

Single input state feedback

$$\hat{H}(s) = H(s) - \frac{H(s)b(g+sf)^{T}H(s)}{1+(g+sf)^{T}H(s)b}$$

# **State Feedback Theory**

*Given:*  $|\lambda_{1}| = \mathbb{E}[\lambda_{1}] = \mathbb{E}[\lambda_{1$ 

Find:  $g \in \mathbb{R}^n$   $f \in \mathbb{R}^n$  such that  $g \in \mathbb{R}^{|\mu_k|^{T}} = 1$ for k = 1, 2, ..., 2nSolution: Denote  $r_k = H(\mu_k)b$ 

Then we need to solve

,

$$r_k^T g + \mu_k r_k^T f = -1$$
  $k = 1, 2, ..., 2n$ 

![](_page_17_Figure_0.jpeg)

- 1. **G** is invertible if the system is controllable and  $\mu_{l}$ ,  $\mu_{2}$ ,..., $\mu_{2n}$  are distinct.
- 3. If **G** is invertible and the set  $\mu_1, \mu_2, \dots, \mu_{2n}$  is closed under conjugation then **g** and **f** are real.
- 5. In principle the 2n poles can be assigned using a single input.

![](_page_18_Figure_0.jpeg)

With  $\mathbf{b} = (1 \ 2)^T$  we wish to assign poles to:

 $\mu_1 = -1 + 10i$   $\mu_2 = -1 - 10i$   $\mu_3 = -2$   $\mu_4 = -3$ 

$$r_{k}^{T}g + \mu_{k}r_{k}^{T}f = -1$$

$$H(\mu_{2})b = (|-1-10i|^{2}M + (-1-10i)C + K)^{-1}b = (-0.0102 - 0.0021i) - 0.0020i)$$

$$H(\mu_{3})b = (0.1236) - 0.0020i$$

$$H(\mu_{4})b = (0.0714) - 0.0714 - 0.0014$$

 $\begin{bmatrix} -0.0102 + 0.0021i & -0.0097 + 0.0020i & -0.0110 - 0.1043i & -0.0101 - 0.0989i \\ -0.0102 - 0.0021i & -0.0097 - 0.0020i & -0.0110 + 0.1043i & -0.0101 + 0.0989i \\ 0.1236 & 0.2360 & -0.2472 & -0.4719 \\ 0.0714 & 0.1111 & -0.2143 & -0.3333 \end{bmatrix} \begin{pmatrix} g \\ f \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$ 

Solution:

 $g = [68.8750 \ 30.3750]^T$   $f = [-62.6750 \ 68.1750]^T$ 

Solve the eigenvalue problem:

$$A = \begin{bmatrix} 0 & I \\ -(K + \mathbf{bg}^T) & -(C + \mathbf{bf}^T) \end{bmatrix} \qquad B = \begin{bmatrix} I & 0 \\ 0 & M \end{bmatrix}$$

 $\det(A - \lambda B) = 0$ 

As requested, the eigenvalues are:

$$\mu_{1} = -1 + 10 i$$

$$\mu_{2} = -1 - 10 i$$

$$H|s| = |s^{2}M + sC + K|^{-1}$$

$$\mu_{4} = -3$$

#### **Control of Actuator Poles**

![](_page_21_Picture_1.jpeg)

#### **State Feedback**

#### Short Beam Experiment

![](_page_22_Figure_2.jpeg)

## **Sensitivity Analysis**

Characteristic equations:

$$1 + (g + \mu_j f)^T \frac{N(\mu_j)}{d(\mu_j)} b = 0$$

Perturbation due to a small change in the control gains:

$$N(\mu_{j}+\delta\mu_{j})=N(\mu_{j})+\frac{\partial N}{\partial s}|_{s=\mu_{j}}\frac{\partial \mu_{j}}{\partial g}\delta g$$
$$d(\mu_{j}+\delta\mu_{j})=d(\mu_{j})+\frac{\partial d}{\partial s}|_{s=\mu_{j}}\frac{\partial \mu_{j}}{\partial g}\delta g$$

Results in linear equations in the control gains:

$$S_{ji}^{g} = \frac{\partial \mu_{j}}{\partial g_{i}} = \frac{-e_{i}^{T} N(\mu_{j}) b}{\frac{\partial d}{\partial s}|_{s=\mu_{j}} + (g + \mu_{j} f)^{T} \frac{\partial N}{\partial s}|_{s=\mu_{j}} b + f^{T} N(\mu_{j}) b} \qquad S_{ji}^{f} = \mu_{j} S_{ji}^{g}$$

## **Sensitivity Analysis**

- Assignment of the eigenvalue sensitivities.
- Development of the sensitivity equations with respect to the changes in the control gains.
- Development of the sensitivity equations with respect to the errors in the measured receptance terms.
- Partial pole placement using the sensitivity analysis. J. E. Mottershead, M. G. Tehrani and Y. M. Ram, Assignment of eigenvalue sensitivities from receptance measurements, *Mechanical Systems and Signal Processing*, 23, 2009,1931-1939.

#### **Partial Pole Placement**

Partial pole placement is the problem of assigning certain poles, while keeping the other poles of interest unchanged.

$$\varphi_{k}^{T} \left( M \lambda_{k}^{2} + C \lambda_{k} + K \right) \varphi_{k} = - \left( \varphi_{k}^{T} b \right) \left( \left( g^{T} + \lambda_{k} f^{T} \right) \varphi_{k} \right)$$

Uncontrollability condition:

$$\left(\varphi_{k}^{T}b\right)=0$$
  $b=\mathrm{null}\left(\varphi_{k}^{T}\right)$ 

## **Numerical Example**

$$M = \begin{bmatrix} 3 & & & \\ & 10 & & \\ & & 20 & \\ & & & 12 \end{bmatrix} \quad C = \begin{bmatrix} 2.3 & -1 & & & \\ -1 & 2.2 & -1.2 & & \\ & -1.2 & 2.7 & -1.5 & \\ & & -1.5 & 1.5 \end{bmatrix} \quad K = \begin{bmatrix} 40 & -30 & & & \\ -30 & 60 & -30 & & \\ & & -30 & 90 & -30 & \\ & & & -30 & 30 \end{bmatrix}$$

#### The open-loop poles :

$$\lambda_{1,2} = -0.0108 \pm 0.8736i$$
  

$$\lambda_{3,4} = -0.0809 \pm 1.6766i$$
  

$$\lambda_{5,6} = -0.1336 \pm 2.5280i$$
  

$$\lambda_{7,8} = -0.3980 \pm 4.0208i$$

We wish to assign the first two pairs of poles while the remaining poles are unchanged.  $\mu_{1,2} = -0.03 \pm 1i$  $\mu_{3,4} = -0.1 \pm 2i$ 

#### **Partial Pole Placement**

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_27_Picture_3.jpeg)

## **Experiments: General Procedure**

- Measure the open loop input-output FRF over a desired frequency range.
- Fit MIMO rational fraction polynomials to the measure FRF and obtain the input-output transfer function.
- Select the force distribution vector b(s) possibly for partial pole placement.
- Apply the Sherman-Morrison formula to obtain characteristic equations in the unknown gains, g, f.
- In the case of robust pole placement, thin in the sensitivity to measurement error, subject  $[{\mathfrak G}] \begin{pmatrix} g \\ f \end{pmatrix} = \begin{pmatrix} z \\ z \\ -1 \end{pmatrix}$
- Implementation of the controller using dSPACE in real time.

## Partial Pole Placement Modular Test Structure

![](_page_29_Picture_1.jpeg)

(b) 'H' configuration

(a) 'T' configuration

## **T-Configuration**

![](_page_30_Figure_1.jpeg)

#### **Assignment of the Bending Mode**

$$b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
  $\mu_{1,2} = -8 \pm 350 i$   $g = \begin{bmatrix} 19000 \\ 19000 \end{bmatrix}$   $f = \begin{bmatrix} 34 \\ 34 \end{bmatrix}$ 

![](_page_31_Figure_2.jpeg)

#### **Assignment of the Torsional Mode**

$$b = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \mu_{1,2} = -60 \pm 535 i \qquad g = \begin{bmatrix} 10862 \\ -10862 \end{bmatrix} \quad f = \begin{bmatrix} 30 \\ -30 \end{bmatrix}$$

![](_page_32_Figure_2.jpeg)

#### Sequential Pole Placement using Multi-input State Feedback

![](_page_33_Figure_1.jpeg)

#### **Multi-input State Feedback**

![](_page_34_Figure_1.jpeg)

#### Robust Pole Placement Assignment of poles by single-input and multi-input control

![](_page_35_Figure_1.jpeg)

#### **Robustness to Measurement Errors**

The poles are given by the zeros of p(s),  $s=\mu_i$ 

$$p(H, \mu_{j}) = 1 + (g + \mu_{j} f)^{T} H(\mu_{j}) b = 0$$
  
Consider a small perturbation  $H + \sum_{p=1}^{n} \sum_{q=1}^{n} \delta h_{pq} e_{p} e_{q}^{T}$ esulting in  $\mu_{j} + \delta \mu_{j}$ 
$$p\left(H + \sum_{p=1}^{n} \sum_{q=1}^{n} \delta h_{pq} e_{p} e_{q}^{T}, \mu_{k}\right) = p(H, \mu_{k}) + \sum_{p=1}^{n} \sum_{q=1}^{n} \left(\frac{\partial p}{\partial h_{pq}}\right) \delta h_{pq} = 0$$

which leads to,

$$\frac{\partial \mu_{k}}{\partial h_{pq}} = \frac{-\left(g + \mu_{k}f\right)^{T}e_{p}e_{q}^{T}b\left(\mu_{k}\right)}{f^{T}H\left(\mu_{k}\right)b\left(\mu_{k}\right) + \left(g + \mu_{k}f\right)^{T}\left(\frac{\partial H}{\partial s}|_{s=\mu_{k}}b\left(\mu_{k}\right) + H\left(\mu_{k}\right)\frac{\partial b}{\partial s}|_{s=\mu_{k}}\right) - \left(g + \mu_{k}f\right)^{T}e_{p}\frac{\partial h_{pq}}{\partial s}|_{s=\mu_{k}}e_{q}^{T}b\left(\mu_{k}\right)}$$

#### **Example: Robust Pole Placement**

$$M = \begin{bmatrix} 2 & & \\ & 1 & \\ & & 3 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ & -1 & 1 \end{bmatrix} \quad K = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 4 & -2 \\ -1 & -2 & 3 \end{bmatrix}$$

We wish to assign the closed-loop poles while using the robustness condition,

$$\min_{g,f} \left\| \frac{\partial \mu_k}{\partial h_{11}} \quad \frac{\partial \mu_k}{\partial h_{12}} \quad \cdots \quad \frac{\partial \mu_k}{\partial h_{3,3}} \right\| ; \ k=1, 2, \dots, 6$$

# Single-input robust assignment of poles

![](_page_38_Figure_1.jpeg)

#### Sequential multi-input robust assignment of poles

![](_page_39_Figure_1.jpeg)

M.G. Tehrani, J.E. Mottershead, A.T. Shenton and Y. M. Ram, Robust pole placement in structures by the method of receptances, Mechanical Systems and Signal Processing, 2011, 25(1),112-122.

## **H-Configuration**

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

#### **Piezo Beam**

![](_page_43_Figure_1.jpeg)

**M.G. Tehrani**, R. N. R. Elliott and J. E. Mottershead, Partial Pole Placement in Structures by the Method of Receptances: Theory and Experiments, *Journal of Sound and Vibration*, 2010, 329(24) 5017–5035.

## AgustaWestland W30 Helicopter Airframe

- Experiments carried out on AgustaWestland W30 helicopter airframe at Yeovil
- In total five days (two visits to Yeovil) during February and March 2011
- We used electro-hydraulic actuators built in the airframe for excitation and control
- Experiments include:
  - Open-loop tests with two different input voltages
  - Closed-loop tests with the higher input voltage
- The airframe system is nonlinear
- The closed-loop poles were assigned with small real parts so that the sharp peaks would be clearly seen in the measured closed-loop FRF
- Motivation: to avoid the resonance due to the blade passing frequency

#### **W30 Helicopter Airframe**

![](_page_45_Picture_1.jpeg)

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_45_Picture_4.jpeg)

### **Electro-hydraulic Actuators**

![](_page_46_Figure_1.jpeg)

- There are four actuators in total.
- The main gearbox was present but the engines had been removed.
- Insufficient mass over the rear actuators for reacting the control force.
- The 2 rear actuators were pressurised and used passively.
- The 2 front actuators were used to apply the control force.

#### **Open-Loop Modes**

![](_page_47_Figure_1.jpeg)

#### Nonlinearity: FRFs at Different Amplitudes

![](_page_48_Figure_1.jpeg)

#### Example Measured and Curve-Fitted FRFs

![](_page_49_Figure_1.jpeg)

#### Pole Placement: Simulated and Experimental Results $b=(1 \ 1)^T$ $\mu_{1,2}=-1\pm 84i, \mu_{3,4}=-2\pm 160i$

![](_page_50_Figure_1.jpeg)

Simulation

# Location of the closed-loop poles (1st case)

![](_page_51_Figure_1.jpeg)

Pole s-plane locations

## **Closed-loop mode-shapes (1st case)**

![](_page_52_Figure_1.jpeg)

(a) Tail bending:
vertical + horizontal
13.7 Hz (86 rad/s)
0.98 damping

(b) Vertical bending of airframe
17.0 Hz (107 rad/s)
2.18 damping

(c) Horizontal bending of airframe

25.2Hz (157 rad/s) 1.28 damping

## Other Experimental Results: Assigning 3 Different Levels of Damping

![](_page_53_Figure_1.jpeg)

![](_page_53_Figure_2.jpeg)

![](_page_53_Figure_3.jpeg)

J.E. Mottershead and **M.G. Tehrani,** S. James and P. Court, Active Vibration Control Experiments on an Agusta-Westland W30 Helicopter Airframe, *Journal of* 300*IMECHE part C*, 2011, in press.

## **Future Work**

- Active flutter control for aircraft.
- Active control of asymmetric systems.
- Stochastic control.
- Vibration control of parametrically excited systems.

#### **Future work: Aeroservoelasticity**

Motivation: To increase the flutter boundary by the eigenvalue assignment

![](_page_55_Picture_2.jpeg)

Dynamics and Control Laboratory at the University of Liverpool

# Aeroservoelasticity

![](_page_56_Picture_1.jpeg)

#### **Future work: Asymmetric Systems**

![](_page_57_Figure_1.jpeg)

#### **Vibration Control of an Asymmetric Systems**

$$\left(Ms^{2}+Cs+K+\sum_{i=1}^{j}\mu_{i}k_{ci}E_{i}\right)x(s)=p(s)+b(s)u(s)$$

**Structural Modification** 

$$H_{a}(s) = \left(I + H(s)\sum_{i=1}^{j} \mu_{i}k_{ci}E_{i}\right)^{-1}H(s)$$

**Active Control** 

$$\bar{H}(s) = H_{a}(s) - \frac{H_{a}(s)b(g+sf)^{T}H_{a}(s)}{1+(g+sf)^{T}H_{a}(s)b}$$

#### **Partial Pole Placement of an Asymmetric** system

![](_page_59_Figure_1.jpeg)

## Future work: Uncertain Dynamic Systems

If we have a rank-1 disturbance to a dynamic system:

$$\hat{H}(s) = H(s) - \frac{H(s)b(g+sf)^{T}H(s)}{1+(g+sf)^{T}H(s)b}$$

Where are the open-loop poles of the system?

$$\delta(s) = \frac{-1}{d_r^T H(s) d_l}$$

#### Two degrees of freedom system

![](_page_61_Figure_1.jpeg)

![](_page_62_Figure_0.jpeg)

![](_page_63_Figure_0.jpeg)

#### **Stochastic Control**

If we have a rank-1 disturbance to a dynamic system

$$\hat{H}(s) = H_c(s) - \frac{\delta(s)H_c(s)d_ld_r^TH_c(s)}{1 + \delta(s)d_r^TH_c(s)d_l}$$

and a rank-1 control such as state feedback:

$$H_{c}(s) = H(s) - \frac{H(s)b(g+sf)^{T}H(s)}{1+(g+sf)^{T}H(s)b}$$

Where are the closed-loop poles of the system? Can we minimize the frequency length covered by the eigenvalues using the feedback control?

#### **Future work: Parametric Excitation**

![](_page_65_Figure_1.jpeg)

# Conclusion Southampton

- The theory of the receptance method has been introduced and developed for:
  - Output feedback
  - Single-input state feedback
  - Sensitivity analysis
  - Partial pole placement
  - Robust pole placement
- There are numerous advantages over conventional matrix methods: no need to know or to evaluate the system matrices **M**, **C**, **K**; no need for an observer or for model reduction; no need to model the dynamic behaviour of actuators and sensors.
- Practical implementation of the receptance method on an Agusta-Westland W30 helicopter has been demonstrated.