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Active Vibration Control

• Limitations in passive modification

 Difficulty in measuring the rotational degrees of 
freedom

 Large and inaccurate structural models (stiffness, 
mass and damping)

 Limitation in the form of modification (Symmetry, 
positive-definite)

 The rank of modification 
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Introduction to Receptance Method

H  s =s 2 M sCK 
−1

H  s =
N  s 
d  s 

H  s =∑
k =1

n

 φk φk
T

s−λk 


φk
¿ φk

¿T

s−λk
¿  

x  s =H  s  f  s 

Inverse of the 
dynamic stiffness 
matrix,
The transfer function 
between input and 
output data,

The ratio of two 
polynomials,

In terms of the 
eigenvalues and 
eigenvectors,
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Active Vibration Control by the
Receptance Method

• There is no requirement to know or to evaluate 
the  M, C, K matrices. 

• The receptance equations              are made 
complete with a small number of measured 
force inputs.  

• There is no requirement for an observer or for 
model  reduction.

• The method is general and can be applied to 
any input-output measured data.

x  s =H  s  f  s 
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Practical Application of Active Vibration 
Control by the Receptance Method

• Control forces are applied using actuators (piezo devices, proof-
mass actuators, electro-hydraulic etc) with power amplifiers. These 
have dynamics which must be modelled by conventional (matrix) 
methods.

• Responses are measured using sensors (piezo-strip devices, ICP 
accelerometers etc). These also have dynamic behavior that must 
be modelled by the conventional approach.

• Modelling of actuators and sensors is unnecessary by the 
receptance method. We simply generalise it to the frequency 
response function between any input and any output – typically 
voltage input to the power amplifier, voltage output from an ICP 
device.

• The measured open-loop FRF is a complete model of the systems, 
including any time delays due to A/D, D/A conversion, integration of 
accelerometer signals etc.
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Output Feedback Control

s2 MsCK  x  s =Bu  s  p  s 

y  s =Dx  s 

u  s =− GsF  y  s 

D=BT ∈ℜm×n

s 2 M sCKB diag  g isf i BT  x  s = p  s 

1.  Mathematical model of the system

2. Control Law

3. Collocated sensor and actuator
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Pole - Zero Assignment

H  s =s 2 M sCK 
−1

s 2 M sCKB diag  g isf i BT  x  s = p  s 

 I H  s ΔZ s   x  s =H  s  p  s 

ΔZ  s =B diag  g isf i BT

x  s = IH  s Bdiag g i sf i  BT 
−1

H s  p s 

Receptance Matrix

Active modification
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x  s =
adj  IH  s B diag  g isf i  B

T 
det  IH  s B diag g i sf i  BT 

H s  p  s 

det  IH  λ j  B diag g i λ j f i  BT =0 ; j=1, 2,  , r ; r≤2n

[adj  IH  μk B diag  g iμk f i  BT  H  μk ] pp
=0

Pole assignment 

Natural frequencies given from the denominator characteristic equation.

Zero assignment

Antiresonances given by the zeros of the numerator matrix terms –The 
antiresonances are

generally different for the different receptance terms.
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Active Vibration Control of the T-Plate
Output Feedback

1st mode: 42Hz 2nd mode: 53Hz 3rd mode: 130Hz
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Rational Fraction Polynomials

h11 iω  h12 iω 

h11  s =h22  s = 7 .956×10−10 s 21. 382×10−8 s6 . 438×10−5

1. 476×10−10 s44 .987×10−9 s 32 .515×10−5 s20 . 0003862 s1

h12  s =h21  s = −1. 334×10−10 s2−4 .678×10−9 s5 .208×10−6

1. 451×10−10 s 45 .034×10−9 s32 . 494×10−5 s20 . 0003999 s1 13



Pole and Zero Assignment

J.E. Mottershead, M.G. Tehrani, S. James and Y.M. Ram, Active vibration 
suppression by pole-zero   placement using measured receptances, Journal 
of Sound and Vibration, 311(3-5), 2008, 1391-1408.

Closed-loop

Open-loop
Closed-loop−12±284i , −22±365i

−10±290i , −25±375 i
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Single-Input State Feedback

M ẍC ẋKx=bu  t  p  t 

u  t =− f T ẋ−gT x

s 2 M s Cbf T  KbgT  x  s = p  s 

Control Force

Rank-1 Modification
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Α−1s =Α−1 s −
A−1 s uvT Α−1 s 

1v T Α−1s u

Sherman-Morrison Formula (Rank 1 modification)

H  s =H s −
H s b  gsf T H  s 

1  gsf T H  s b

A s =A  s uvT

State feedback

Single input state feedback

A−1=H      u=b        v= gsf 
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State Feedback Theory

s2 M sCK  x  s =Bu s  p  s {μ1 μ2 ⋯ μ2n }

g ∈Rn f ∈Rn
gμk f 

T
H  μk  b=−1

k=1, 2,. . . , 2n

Given: , and a complex set 

 closed under conjugation.

 such that 

 for 

Find:

Solution:
Denote r k=H  μk b

Then we need to solve

r k
T gμk r k

T f =−1 k=1,2, . . . ,2n

, 

. 
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1.  G is invertible if the system is controllable and µ1, µ
2,…µ2n  are distinct. 

3. If  G is invertible and the set µ1, µ2,…µ2n is closed 
under conjugation then g and f are real.

5. In principle the 2n poles can be assigned using a 
single input.

[
r 1

T μ1 r 1
T

r 2
T μ2 r 2

T

⋮ ⋮

r 2n
T μ2n r2n

T ] g
f =

−1
−1
⋮
−1

 G=[
r 1

T μ1r 1
T

r 2
T μ2r 2

T

⋮ ⋮

r 2n
T μ2n r 2n

T ]
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Example

With b=(1   2)T we wish to assign poles 
to:

5 3

1
1 2

1x 2x

5 3

1
1 2

1x 2x

M=[1 0
0 2 ] C=[ 1 −1

−1 1 ] K=[ 8 −3
−3 3 ]

μ1=−110 i μ2=−1−10 i μ3=−2 μ4=−3
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r k
T gμk r k

T f =−1
H μ2  b= −1−10 i 2 M −1−10 i  CK 

−1
b=−0 . 0102−0 .0021 i

−0 .0097−0 . 0020 i 
H μ3  b=0 .1236

0 .2360 
H μ4 b=0 . 0714

0.1111 

[
−0. 01020 .0021 i −0 . 00970 .0020 i −0 .0110−0 .1043 i −0 .0101−0 .0989 i
−0. 0102−0 .0021 i −0 . 0097−0 .0020 i −0 .01100 .1043 i −0 .01010 .0989 i

0 .1236 0 .2360 −0 .2472 −0 .4719
0 .0714 0 .1111 −0 .2143 −0 .3333

] gf =
−1
−1
−1
−1


Solution:

g= [ 68 .8750 30 . 3750 ]T f = [−62 .6750 68 .1750 ]T
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Solve the eigenvalue problem:

det  A−λB =0

A=[ 0 I

− KbgT  −Cbf T  ] B=[ I 0
0 M ]

As requested, the eigenvalues are:

μ1=−110 i

μ2=−1−10 i

H  s =s2 M sCK 
−1

μ4=−3
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Control of Actuator Poles

α

β∫

V a

+

+

+
-

c1 s2

m p s2C pc1 c2  sK p
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State Feedback

α

β∫

a

+

ẍ
V

+

+
-

H  s 

g

f∫

+
-

+
+

Short Beam 
Experiment
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Sensitivity Analysis

S ji
g=

∂ μ j

∂ g i

=
−ei

T N  μ j  b
∂d
∂ s

∣s=μ
j
 gμ j f 

T ∂N
∂ s

∣s=μ j
b f T N  μ j b

d  μ jδμ j =d  μ j 
∂d
∂ s

∣s=μ
j

∂ μ j

∂ g
δg

N  μ jδμ j =N  μ j 
∂N
∂ s

∣s=μ
j

∂ μ j

∂ g
δg

1 gμ j f 
T N  μ j 

d  μ j 
b=0

S ji
f =μ j S ji

g

Perturbation due to a small change in the 
control gains: 

Characteristic equations:

Results in linear equations in the control gains:
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Sensitivity Analysis

•   Assignment of the eigenvalue sensitivities.

•   Development of the sensitivity equations with 
respect to the changes in the control gains.

•   Development of the sensitivity equations with   
  respect to the errors in the measured 
receptance terms.

•  Partial pole placement using the sensitivity 
analysis.
J. E. Mottershead, M. G. Tehrani  and Y. M. Ram, Assignment of 
eigenvalue sensitivities from receptance measurements, Mechanical 
Systems and Signal Processing, 23, 2009,1931-1939.
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Partial Pole Placement

Partial pole placement is the problem of 
assigning certain poles, while keeping the 
other poles of interest unchanged. 

Uncontrollability condition:

φk
T  Mλk

2CλkK φk=−φk
T b  gT λk f T φk 

φk
T b =0 b=null φk

T 
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Numerical Example

The open-loop poles : We wish to assign the 
first two pairs of poles 
while the remaining 
poles are unchanged.

μ1,2=−0 .03±1i
μ3,4=−0 .1±2i

 

M=[
3

10
20

12
] C=[

2 .3 −1
−1 2 .2 −1 .2

−1 .2 2 .7 −1.5
−1 .5 1 .5

] K=[
40 −30
−30 60 −30

−30 90 −30
−30 30

]

λ1,2=−0 .0108±0 . 8736 i
λ3,4=−0 . 0809±1. 6766 i

λ5,6=−0 .1336±2 .5280 i

λ7,8=−0 .3980±4 .0208 i
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[φ5
T φ5

T

λ5

φ7
T φ7

T

λ7
]b1

b2 =0

b  s =b1
b2

s

b=
0 .1996
0 .7146
0 .2723
−0 .5712

 1
s 

0 .1143
0 .1512
0 .0898
−0 .0719


g=

10 .1513
12 .1105
8 .1401
7. 2688

 f =
4 . 4973
5 . 4989
6 . 4880
11. 2309



 

 

Partial Pole Placement

28



Experiments: General Procedure

• Measure the open loop input-output FRF over a desired frequency 
range.

• Fit MIMO rational fraction polynomials to the measure FRF and obtain 
the input-output transfer function. 

• Select the force distribution vector b(s) – possibly for partial pole 
placement.

• Apply the Sherman-Morrison formula to obtain characteristic equations 
in the unknown gains, g, f.

• In the case of robust pole placement, minimise the sensitivity to 
measurement error, subject to,

• Implementation of the controller using dSPACE  in real time.

[G ]gf =
−1
⋮
−1 

29



Partial Pole Placement
Modular Test Structure

(a) ‘T’ configuration (b) ‘H’ configuration

x
z

y

30



T-Configuration 

λ1,2=−2. 0±339 i
λ3,4=−8 .7±503 i

λ5,6=−20 . 0±1050 i

 

 

Open-loop poles:

h11 iω  h12 iω 
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Assignment of the Bending Mode

g=[19000
19000 ] f =[34

34 ]μ1,2=−8±350 ib=11 
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Assignment of the Torsional Mode

g=[10862
−10862 ] f =[30

−30 ]μ1,2=−60±535 ib= 1
−1
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Sequential Pole Placement using 
Multi-input State Feedback 

B  s =[ β1  s  β2  s  ⋯ βn  s  ] ;

G=[ g1 g 2 ⋯ gn ] ; F=[ f 1 f 2 ⋯ f n ]

det  IGμ j F 
T

H  μ j  B  μ j =0

34



Multi-input State Feedback

μ1,2=−13±350 i
μ3,4=−30±610 i

B=[1 1
1 −1 ] G=[17900 34000

17900 −34000 ] F=[61 13
61 −13 ]
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Assignment of poles by single-input and multi-input 
control

Robust Pole Placement

36



Robustness to Measurement Errors
The poles are given by the zeros of p(s), s=µj

p  H , μ j =1 gμ j f 
T

H  μ j  b=0

Consider a small perturbation H∑
p=1

n

∑
q=1

n

δh pq e pe q
Tresulting in μ jδμ j

pH∑
p=1

n

∑
q=1

n

δh pq e p eq
T , μk = p  H , μk ∑

p=1

n

∑
q=1

n

 ∂ p
∂ h pq δh pq=0

which leads to,

∂ μk

∂ h pq

=
− gμk f 

T
e p eq

T b  μk 

f T H μk  b  μk  gμk f 
T  ∂H

∂ s
∣s=μ

k
b μk H  μk  ∂ b

∂ s
∣s=μ

k −gμk f 
T
e p

∂ h pq

∂ s
∣s=μ

k
eq

T b  μk 
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Example: Robust Pole Placement

M=[
2

1
3 ] C=[1 0 0

0 1 −1
−1 1 ] K=[

6 −2 −1
−2 4 −2
−1 −2 3 ]

We wish to assign the closed-loop poles while using the robustness condition,

min
g , f

∥
∂ μk

∂ h11

∂ μk

∂ h12

⋯
∂ μk

∂ h3,3

∥ ; k=1, 2, . . . , 6
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Single-input robust assignment of 
poles

The poles are assigned to 
elliptical regions
with centres:

 x c1 , 2 , yc1 ,2 =−0 .2,±0 .8 

 xc3 , 4 , y c3 ,4 =−0 .5,±2 

 xc5 ,6 , y c5 , 6 =−1,±2.5 

and semi-axes a=0.2 and b=0.5.

100 samples taken from a uniform 
distribution representing a measurement
 error of               on  H μ j ±10

39



Sequential multi-input robust  assignment 
of poles

M.G. Tehrani, J.E. Mottershead, A.T. Shenton and Y. M. Ram, Robust 
pole placement in structures by the method of receptances, Mechanical 

Systems and Signal Processing, 2011, 25(1),112-122.
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H-Configuration

Mode 1:  54 Hz

Mode 3:  86 Hz

Mode 2: 
60Hz

Mode 4: 96 Hz

Bending modes Torsional modes

41



1

2

3

4
Partial Pole Placement
 of the Bending Modes 

(1&3)

μ5,6=−30±550 i

b=[1 1 1 1 ]
T

g=[ 5700 5700 9760 9760 ]
T

f =[57 57 32 32 ]
T

μ1,2=−12±340 i

42



1
2

3

4
Partial Pole Placement

 of the Torsional 
Modes (2&4)

μ3,4=−12±410 i

μ7,8=−65±640 i

b=[1 −1 1 −1 ]
T

f = [−55 55 16 −16 ]
T

g=[ 20000 −20000 840 −840 ]
T
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Piezo Beam

x

z

y

-4±56i-20±250i

MFC 
sensors

MFC 
actuators

44

M.G. Tehrani, R. N. R. Elliott and J. E. Mottershead, Partial Pole Placement in 
Structures by the Method of Receptances: Theory and Experiments, Journal of 
Sound and Vibration, 2010, 329(24) 5017–5035.



• Experiments  carried out on AgustaWestland W30 helicopter 
airframe at Yeovil

• In total five days (two visits to Yeovil) during February and March 
2011

• We used electro-hydraulic actuators built in the airframe for 
excitation and control 

• Experiments include:  
• Open-loop tests with two different input voltages 
• Closed-loop tests with the higher input voltage

• The airframe system is nonlinear
• The closed-loop poles were assigned with small real parts so that 

the sharp peaks would be clearly seen in the measured closed-loop 
FRF

• Motivation: to avoid the resonance due to the blade passing 
frequency

AgustaWestland W30 Helicopter Airframe

45



W30 Helicopter Airframe

Actuator
Raft
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Electro-hydraulic Actuators

• There are four actuators in 
total.
• The main gearbox was 
present but the engines had 
been removed. 
• Insufficient mass over the 
rear actuators for reacting the 
control force.
• The 2 rear actuators were 
pressurised and used 
passively.
• The 2 front actuators were 
used to apply the control force.

47



Open-Loop Modes

z

y
x

(a) Vertical tail bending
12.6 Hz, 5.31% damping

(b) Horizontal tail bending
14.6 Hz, 2.78% damping

(c) Airframe vertical bending
17.5 Hz, 5.95% damping

(d) Airframe horizontal bending and
torsion 25.4 Hz, 5.93% damping

48



Nonlinearity: FRFs at Different 
Amplitudes

49



Example Measured and Curve-Fitted 
FRFs
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Pole Placement: Simulated and 
Experimental Results

μ1,2=−1±84 i ,  μ3,4=−2±160 ib=1 1 
T

Simulation

Experiment
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Location of the closed-loop poles (1st 
case)

Pole s-plane locations
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Closed-loop mode-shapes (1st case)

(a) Tail bending: 
vertical + horizontal

13 .7 Hz 86 rad/s 
0 .98 damping

(b) Vertical bending
of airframe

17. 0 Hz 107 rad/s 
2.18 damping

(c) Horizontal bending
of airframe

25 .2 Hz 157 rad/s 
1.28 damping
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Other Experimental Results:
 Assigning 3 Different Levels of Damping

b=1 −1 
T

μ1,2=−3±89 i ,  μ=−8±170 i
μ1,2=−1±89 i ,  μ=−2±170 i

μ1,2=−0 .5±89 i ,  μ=−2±170 i

54

J.E. Mottershead and M.G. Tehrani,  S. 
James and P. Court, Active Vibration 
Control Experiments on an Agusta-Westland 
W30 Helicopter Airframe, Journal of
IMECHE part C, 2011, in press.



• Active flutter control for aircraft.

• Active control of asymmetric systems.

• Stochastic control.
• Vibration control of parametrically excited 

systems.

Future Work
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Future work: Aeroservoelasticity

Dynamics and Control Laboratory at the University of 
Liverpool

Motivation: To increase the flutter boundary by the eigenvalue assignment

56



Aeroservoelasticity
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Future work: Asymmetric Systems

 

m2 

m3 

m1 

kc 

k1 k2 

k3 
k4 

k5 

n1 
f1 

c1 c0 

y 

x 

rigid slider rigid belt 

M=[
m1

m 3

m2

m2
] C=[

c1 0 −c1 0

0 0 0 0
−c1 0 c 1 0

0 0 0 c 0
] K=[

k 1k 2 0 −k 2 0

0 k 4k 5 0 0

−k 2 0 k 20 .5k 3 0 .5k 3

0 0 0 .5k3 k 40 . 5k3k c
]
58



 

  

Ms2CsK∑
i=1

j

μ i k ci E i x s = p s b s u s 

H a s = IH  s ∑
i=1

j

μ i k ci E i 
−1

H  s 

H  s =H a s −
H a s b  gsf T H a s 

1 gsf T H a s  b

Vibration Control of an Asymmetric Systems

Structural Modification

Active Control
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Partial Pole Placement of an Asymmetric 
system

μ=0. 5

λ1,2=  0 .007±8 . 9462i
λ3,4=−0 . 0553±12 .1336 i

g=
0 .7939
-0 .1655
1.0224
0 . 0771

 f =
 -0 .7469
0 .4484

-0. 8670
0 .0665



μ1,2=  −0 . 08±10i
μ3,4=−0 .1±14 i

Open-loop poles for Closed-loop poles

Experimental Work? 

μ=0. 5
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Future work: Uncertain Dynamic 
Systems

If we have a rank-1 disturbance to a dynamic 
system:

Where are the open-loop poles of the system?

H  s =H s −
H s b  gsf T H  s 

1 gsf T H  s b

δ  s =
−1

d r
T H  s d l
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Two degrees of freedom system
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Stochastic Control
If we have a rank-1 disturbance to a dynamic 
system

    and a rank-1 control such as state feedback:

   

   Where are the closed-loop poles of the system? 
Can we minimize the frequency length covered by 
the eigenvalues using the feedback control?

H  s =H c s −
δ  s H c  s d l d r

T H c s 

1δ  s d r
T H c s d l

H c  s =H s −
H  s b  gsf T H  s 

1  g sf T H  s b
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Future work: Parametric Excitation
ẍ  t ω2q cos t  x  t =0
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Conclusion

• The theory of the receptance method has been introduced and 
developed for:
Output feedback
Single-input state feedback
Sensitivity analysis
Partial pole placement
Robust pole placement

• There are numerous advantages over conventional matrix methods: 
no need to know or to evaluate the system matrices M, C, K; no 
need for an observer or for model reduction; no need to model the 
dynamic behaviour of actuators and sensors.

• Practical implementation of the receptance method on an Agusta-
Westland  W30 helicopter has been demonstrated.
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