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Scotian Shelf

Tide-gauge stations from Schwing 1989
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Scotian Shelf

Autospectra of filtered time series from Schwing 1989. Strongest response at Port aux Basques in

Cabot Strait and at Louisbourg on shelf near mouth of Laurentian Channel has frequency above

that of strongest propagating wave at Whitehead Harbour, Sambro and West Head away from

channel mouth.
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Lake of Lugano

Lake of Lugano spectra from Mysak, Salvadé, Hutter and Scheiwiller, 1987
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Lake of Lugano

Trösch 1984 : finite element barotropic model obtained Bay modes.
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Governing equation

The governing equation is taken to be the constant f
barotropic shelf wave equation:

∇ · (H−1∇Ψt) + f(∇Ψ×∇H−1) · ẑ = 0.

Here H(x, y) is the (given) local undisturbed fluid depth,
Ψ is the volume flux streamfunction and the velocity is
u = H−1

ẑ ×∇Ψ, ẑ a unit vertical vector.
Writing Ψ(x, y, t) = #{exp(−iωft)ψ(x, y)} gives the pencil

∇ · (H−1∇ψ) + iω−1(∇ψ ×∇H−1) · ẑ = 0.
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An estuary/headland model

(Stocker & J. 1991)
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Estuary-trapped modes

The estuary is wider.

Modes propagate there at higher frequencies than on the
shelf.

These form trapped modes.
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Perfect transmission and reflection
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Conformal invariance

The governing equation

∇ · (H−1∇ψt) + f(∇ψ ×∇H−1) · ẑ = 0.

is invariant under conformal mappings.

Can form the basis for constructing solutions

But means that any shelf that can be conformally
mapped to a straight shelf cannot support trapped
modes.
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Conformally-equivalent channels

Bay equivalent Headland equivalent
–trapping– –no trapping–
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All frequency transmission
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A semi-infinite channel

The equivalent co-ordinate systems. The depth is a function of η
alone.
Cut must be treated with care: solutions in Mysak et al. incorrect.
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A semi-infinite channel

Tightly bunched end contours
(J. 1987)
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A semi-infinite channel

Smoothly turning channel end
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Whole lake modes
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Coastal curvature

y

x0

σ

δη

(J., Levitin and Parnovski 2006)

If one takes a rectilinear smooth shelf supporting only
propagating modes and bends it slightly to form a cape
then it supports a trapped mode
Not so with bay
Does not contradict conformal mapping result
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Coastal curvature – mode matching
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Coastal curvature – lowest mode

|ψ| #{ψ} %{ψ}
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Coastal curvature – weak curvature

Postnova & Craster, 2008

Take H(η) = exp[−2b(1 + η)] (b > 0) (Buchwald & Adams,
1968)

Write ξ = εσ (0 < ε& 1), slowly-varying

Write Ψ(x, y, t) = #{exp[−i(ωft+ bσ/ω)]Φ(ξ, η)}, removing
fast phase so Φ is slowly-varying envelope.

Write p = (1− εδξη)−1, curvature function
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Coastal curvature – weak curvature equation

Then

ε2p2Φξξ + Φηη + [ε3p3ηδξξ − iε2(2b/ω)p2ηδξ]Φξ + (2b− εpδξ)Φη+

[(b/ω)2(2p− p2)− iε2(b/ω)p3ηδξξ]Φ = 0,

with boundary conditions

Φ = 0, (η = 1), Φη = 0, (η = −1).
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Coastal curvature – weak curvature expansion

PC continue by introducing the regular expansion

Φ(ξ, η) = Φ(0)(ξ, η) + εΦ(1)(ξ, η) + ε2Φ(2)(ξ, η) + . . . ,

(b/ω)2 = µ0 + εµ1 + ε2µ2 + ε3µ3 + ε4µ4 + . . . .

The leading order system is then

LΦ(0) = 0, where LΦ = Φηη + 2bΦη + µ0Φ,

with boundary conditions Φ(0)(ξ, 1) = Φ
(0)
η (ξ,−1) = 0, giving

Φ(0) = f(0)(ξ)e−bη sin γ(η − 1), γ =
√

µ0 − b2,

with µ0 determined from
tan 2γ = −γ/b,

and f(0)(ξ) to be determined.
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Coastal curvature – weak curvature expansion

The first order system is
LΦ(1) = δξΦ

(0)
η − µ1Φ

(0), (1)

with Φ(1)(ξ, 1) = Φ(1)
η (ξ,−1) = 0.

Solvability: Right side orthogonal to solutions to the adjoint of the homogeneous problem.
Operator L is not self-adjoint.

Slip in PC – orthogonal to solution of original homogeneous problem

Equivalent and simpler here to write (1) in self-adjoint form

L̂Φ(1) = e2bη(δξΦ
(0)
η − µ1Φ

(0)), where L̂Φ = (e2bηΦη)η + µ0e
2bηΦ,

with boundary conditions unaltered.
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Coastal curvature – weak curvature expansion

Take Φ(0) as solution of the homogeneous adjoint. Then
∫ 1

−1

e2bηΦ(0)(δξΦ
(0)
η − µ1Φ

(0)) dη = 0, i.e. µ1 + βδξ = 0, (2)

where
β = b+ γ(1− cos 4γ)/(4γ − sin 4γ),

is a positive number.
As in PC: δξ varies with ξ, no choice of the number µ1 satisfies (2)
for all ξ.
Hence rescale (weaken) curvature: δξ = εδ̂ξ. (2) is simply µ1 = 0.
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Coastal curvature – weak curvature expansion

Second order, in self-adjoint form

L̂Φ(2) = e2bη(−Φ
(0)
ξξ + δ̂ξΦ

(0)
η − µ2Φ

(0)),

with Φ(2)(ξ, 1) = Φ
(2)
η (ξ,−1) = 0.

Choose Φ(0) as adjoint solution.
Apply solvability condition to give

f (0)ξξ + (µ2 + βδ̂ξ)f
(0) = 0.

– steady 1D Schrödinger equation (trapped mode = bound
state)
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Schrödinger (Landau & Lifshitz)

If δ̂ξ everywhere negative then no trapped mode.
Suppose δ̂ξ somewhere positive. The total change in direction of the shelf is ε∆ where
∆ = [δ̂]∞−∞. Then for a shelf with a finite region of non-zero-curvature and sufficiently small but
positive ∆, a trapped mode always exists:-
In the region of non-zero curvature µ2 can be taken to be small compared to βδ̂ξ and f(0) taken to
be a constant, which can be taken to be unity. Then, for |β∆| " 1,

f
(0)
ξξ = −βδ̂ξ,

giving the change in f
(0)
ξ across the region as

[f(0)
ξ ] = −β

∫ ∞

−∞

δ̂ξ dξ = −β∆.

At large distances f(0) = exp [−
√
−µ2|ξ|] so −2

√
−µ2 = −β∆.

Thus for trapped modes, in the limit |β∆| " 1, β∆ must be positive and µ2 negative with

µ2 → −
1

4
β2∆2, as β∆ → 0+.
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Sech-squared curvature

10−5 10−4 10−3 10−2 10−1 10010−18

10−14

10−10

10−6

10−2

ε

D
2
(ε
)

D2(ε): difference between the computed value (2D spectral) of (b/ω)2 for curvature

δ̂(ξ) = (∆/2) tanh ξ, δ̂ξ(ξ) = (∆/2) sech2 ξ,

∆ = π/2 and b = 2, and the sum of the first three terms of asymptotics (explicit).

Dotted line slope =4 (J., Rodney & Kaoullas 2011)
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Shelf-break to shoreline distance
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(a) Depth profiles and (b) dispersion curves of the first propagating mode for shelf breaks at c = 4

(dotted line), c = 5 (solid line) and c = 6 (dashed line). Here s = 1 and H0 = 0.25.
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Shelfbreak steepness
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(a) Depth profiles and (b) dispersion curves of the first propagating mode for shelf widths s = 0.5

(dotted line), s = 1 (solid line) and s = 1.5 (dashed line). Here c = 5 and H0 = 0.25.
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Lake-end isobaths
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Isobaths (at 0.1 intervals) for the lake-end model with |y| ≤ π/2, x ≥ −d. Here d = 1, H0 = 0.1

and the maximum depth is 1.
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Fundamental lake-end mode
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The absolute value (a), and real (b) and imaginary (c) parts, of the streamfunction ψ for the

fundamental trapped mode. The contours are at equal intervals with positive values solid and

negative values dashed. Here N = 30, M = 72, s = 2, d = 1.6 and L = 9.

(J. & Kaoullas 2011)
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Coastal geometry
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Stratified equations

−iωu− v = −px,

−iωv + u = −py,

−pz − ρ = 0,

−iωρ− b2B2w = 0,

ux + vy + wz = 0.

v = 0, (y = 0),

w = −uĥx − vĥy, (z = −ĥ(x, y), y ≤ 1),

pz = 0, (z = 0),

∇p → 0, x2 + y2 → ∞.
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Slowly-varying shelf geometry

Slow variation: ĥ(x, y) = h(εx, y) = h(ξ, y) where ε & 1.

Classical LGJWKBK ansatz:
p(ξ, y, z) ∼ exp(iS(ξ)/ε)∑∞

j=0 ε
jψj(ξ, y, z).

Zero order: x fixed (ξ a parameter). Problem in (y, z) with
eigenvalue the local longshore wavenumber k(ξ).
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Shelfbreak effects
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Dispersion curves for modes 1 and 2 over the far shelf break (dashed line) and close shelf break

(solid line) at uniform stratification with (a) B = 0.01 and (b) B = 0.2.
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Localised modes
S′(ξ) corresponds to the (two) roots k±(ξ) for the wavenumber.
Writing S±(ξ) = l(ξ)±m(ξ) gives

l(ξ) =
1

2

∫ ξ

[k+(ξ′) + k−(ξ′)] dξ′, m(ξ) =
1

2

∫ ξ

ξ0

[k+(ξ′)− k−(ξ′)] dξ′.

m(ξ) gives direction of propagation of the wave envelopes, giving the forward and backward
propagating modes S+ and S−

l(ξ) is the (fast) phase of each wave, the same for both modes

m(ξ) vanishes when k+ = k−, at ξ = ±ξc (say) for symmetric perturbations (group velocity
vanishes). For |ξ| > ξc waves evanescent.
Matching determines frequency through

1

2ε

∫ ξc

−ξc

[k+(ξ′)− k−(ξ′)] dξ′ ∼ (n+
1

2
)π +O(ε), n = 0, 1, 2, · · · ,
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Numerical solutions

JWKB:
At each ξ station, discretize 2D spectral.
For ξ increasing from ξ = 0, compute k± by inverse
iteration from previous station (extremely fast)
10 stations sufficient for 10 sig. fig. for ω

3D numerical:
Spectral 3D – Chebyshey vertical, Laguerre offshore,
Hermite alongshore.
Inverse iteration using JWKB very fast.
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Eigenvalues

n m B ωA
n,m ωN

n,m Error (%)

0 1 0.01 0.7518365 0.7519881 0.0201
1 1 0.01 0.7454791 0.7456205 0.0190
2 1 0.01 0.7393040 0.7394385 0.0182
0 1 0.15 0.7615593 0.7616983 0.0182
1 1 0.15 0.7555876 0.7557198 0.0175
2 1 0.15 0.7497965 0.7499211 0.0166
0 2 0.01 0.3647694 0.3647729 0.0009
1 2 0.01 0.3640451 0.3640447 0.0001
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3D modes
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Regime diagram
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One wave

Three waves
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