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1. DIFFICULTIES OF COMPUTING POLYNOMIAL ROOTS

There exist many algorithms for computing the roots of a polynomial:

• Bairstow, Graeffe, Jenkins-Traub, Laguerre, Müller, Newton, . . .

These methods yield satisfactory results if:

• The polynomial is of moderate degree

• The roots are simple and well-separated

• A good starting point in the iterative scheme is used

This heuristic has exceptions:

f(x) =

20
∏

i=1

(x − i) = (x − 1)(x − 2) · · · (x − 20)
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Example 1.1 Consider the polynomial

x4 − 4x3 + 6x2 − 4x + 1 = (x − 1)4

whose root is x = 1 with multiplicity 4. MATLAB returns the roots

1.0002, 1.0000 + 0.0002i, 1.0000 - 0.0002i, 0.9998 �

Example 1.2 The roots of the polynomial (x − 1)100 were computed by MATLAB.
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Figure 1.1: The

computed roots of

(x − 1)100.
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Figure 1.2: The root distribution of four perturbed polynomials.
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Example 1.3

componentwise noise amplitude

componentwise signal amplitude
= 10−8

exact root multiplicity computed root relative error

-6.7547000000e-1 4 -6.7547000082e-1 1.2139725913e-9

5.7335000000e+0 6 5.7335000822e+0 1.4344694923e-8

2.1747000000e+0 7 2.17469999237+0 3.5069931355e-9

-9.5568000000e+0 10 -9.5567996740e+0 3.4111255034e-8

-6.5553000000e+0 11 -6.5553001701e+0 2.5954947075e-8

• The root multiplicities were calculated correctly

�
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Example 1.4

componentwise noise amplitude

componentwise signal amplitude
= 10−8

exact root multiplicity computed root relative error

-1.1539000000e+0 4 -1.1539000316e+0 2.7389266674e-8

4.0809000000e+0 5 4.0808998890e+0 2.7198581384e-8

-2.1059000000e+0 6 -2.1058999294e+0 3.2521823798e-8

3.6683000000e+0 7 3.6683000481e+0 1.3110114060e-8

-9.6084000000e+0 13 -9.6084001121e+0 1.1664214687e-8

• The root multiplicities were calculated correctly

�
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2. THE GEOMETRY OF ILL-CONDITIONED POLYNOMIALS

• A root x0 of multiplicity r introduces (r − 1) constraints on the coefficients.

• A monic polynomial of degree m has m degrees of freedom.

• The root x0 lies on a manifold of dimension (m−r+1) in a space of dimension

m.

• This manifold is called a pejorative manifold because polynomials near this man-

ifold are ill-conditioned.

• A polynomial that lies on a pejorative manifold is well-conditioned with respect to

(the structured) perturbations that keep it on the manifold, which corresponds to

the situation in which the multiplicity of the roots is preserved.

• A polynomial is ill-conditioned with respect to perturbations that move it off the

manifold, which corresponds to the situation in which a multiple root breaks up

into a cluster of simple roots.
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Example 2.1 Consider a cubic polynomial f(x) with real roots x0, x1 and x2

(x − x0)(x − x1)(x − x2) = x3 − (x0 + x1 + x2)x
2 +

(x0x1 + x1x2 + x2x0)x − x0x1x2

• If f(x) has one double root and one simple root, then x0 = x1 6= x2 and thus

f(x) can be written as

x3 − (2x1 + x2)x
2 + (x2

1 + 2x1x2)x − x2
1x2

The pejorative manifold of a cubic polynomial that has a double root is the sur-

face defined by
(

−(2x1 + x2) (x2
1 + 2x1x2) −x2

1x2

)

x1 6= x2

8
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• If f(x) has a triple root, then x0 = x1 = x2 and thus f(x) can be written as

x3 − 3x0x
2 + 3x2

0x − x3
0

The pejorative manifold of a cubic polynomial that has a triple root is the curve

defined by
(

−3x0 3x2
0 −x3

0

)

�
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Theorem 2.1 The condition number of the real root x0 of multiplicity r of the poly-

nomial f(x) = (x − x0)
r , such that the perturbed polynomial also has a root of

multiplicity r, is

ρ(x0) :=
∆x0

∆f
=

1

r |x0|

‖(x − x0)
r‖

‖(x − x0)r−1‖
=

1

r |x0|

(

∑r

i=0

(

r
i

)2
(x0)

2i

∑r−1
i=0

(

r−1
i

)2
(x0)2i

)

1
2

where ‖·‖ = ‖·‖2 and

∆f =
‖δf‖

‖f‖
and ∆x0 =

|δx0|

|x0|
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Example 2.2 The condition number ρ(1) of the root x0 = 1 of (x − 1)r is

ρ(1) =
1

r

(

∑r

i=0

(

r
i

)2

∑r−1
i=0

(

r−1
i

)2

)

1
2

This expression reduces to

ρ(1) =
1

r

√

√

√

√

(

2r
r

)

(

2(r−1)
r−1

)
=

1

r

√

2(2r − 1)

r
≈

2

r
for large r

Compare with the componentwise and normwise condition numbers

κc(1) ≈
|δx0|

εc

and κn(1) ≈
|δx0|

εn

• ρ(1) is independent of the the noise level (assumed to be small)

• ρ(1) decreases as the multiplicity r of the root x0 = 1 increases �
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3. A SIMPLE POLYNOMIAL ROOT FINDER

Let wi(x) be the product of all factors of degree i of f(x)

f(x) = w1(x)w2
2(x)w3

3(x) · · ·wrmax

rmax
(x)

Perform a sequence of greatest common divisor (GCD) computations

q1(x) = GCD
(

f(x), f (1)(x)
)

= w2(x)w2
3(x)w3

4(x) · · ·wrmax−1
rmax

(x)

q2(x) = GCD
(

q1(x), q
(1)
1 (x)

)

= w3(x)w2
4(x)w3

5(x) · · ·wrmax−2
rmax

(x)

q3(x) = GCD
(

q2(x), q
(1)
2 (x)

)

= w4(x)w2
5(x)w3

6(x) · · ·wrmax−3
rmax

(x)

q4(x) = GCD
(

q3(x), q
(1)
3 (x)

)

= w5(x)w2
6(x)w3

7(x) · · ·wrmax−4
rmax

(x)

...

The sequence terminates at qrmax
(x), which is a constant.

12
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A set of polynomials hi(x), i = 1, . . . , rmax, is defined such that

h1(x) = f(x)
q1(x) = w1(x)w2(x)w3(x) · · ·

h2(x) = q1(x)
q2(x) = w2(x)w3(x) · · ·

h3(x) = q2(x)
q3(x) = w3(x) · · ·

...

hrmax
(x) =

qrmax−2

qrmax−1
= wrmax

(x)

The functions, w1(x), w2(x), · · · , wrmax
(x), are determined from

w1(x) =
h1(x)

h2(x)
, w2(x) =

h2(x)

h3(x)
, · · · , wrmax−1(x) =

hrmax−1(x)

hrmax
(x)

until

wrmax
(x) = hrmax

(x)
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The equations

w1(x) = 0, w2(x) = 0, · · · , wrmax
(x) = 0

contain only simple roots, and they yield the simple, double, triple, etc., roots of

f(x).

• If x0 is a root of wi(x), then it is a root of multiplicity i of f(x).

�

Mathematical operations performed in this root finder:

• GCD computations

• Polynomial divisions

• Solution of simple polynomial equations

14
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Example 3.1 Calculate the roots of the polynomial

f(x) = x6 − 3x5 + 6x3 − 3x2 − 3x + 2

whose derivative is

f (1)(x) = 6x5 − 15x4 + 18x2 − 6x − 3

Perform a sequence of GCD computations

q1(x) = GCD
(

f(x), f (1)(x)
)

= x3 − x2 − x + 1

q2(x) = GCD
(

q1(x), q
(1)
1 (x)

)

= x − 1

q3(x) = GCD
(

q2(x), q
(1)
2 (x)

)

= 1

The maximum degree of a divisor of f(x) is 3 because the sequence terminates at

q3(x).
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The polynomials hi(x) are:

h1(x) = f(x)
q1(x) = x3 − 2x2 − x + 2

h2(x) = q1(x)
q2(x) = x2 − 1

h3(x) = q2(x)
q3(x) = x − 1

The polynomials wi(x) are

w1(x) = h1(x)
h2(x) = x − 2

w2(x) = h2(x)
h3(x) = x + 1

w3(x) = h3(x) = x − 1

and thus the factors of f(x) are

f(x) = (x − 2)(x + 1)2(x − 1)3

�
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3.1 Discussion of method

• The computation of the GCD of two polynomials is an ill-posed problem because

it is not a continuous function of their coefficients:

– The polynomials f(x) and g(x) may have a non-constant GCD, but the per-

turbed polynomialsf(x) + δf(x) and g(x) + δg(x) may be coprime.

• The determination of the degree of the GCD of two polynomials reduces to the

determination of the rank of a resultant matrix, but the rank of a matrix is not

defined in a floating point environment.

• Polynomial division is an ill-posed problem:

Even if
f(x)

g(x)
is a polynomial,

f(x) + δf(x)

g(x) + δg(x)
is a rational function for arbitrary δf(x) and δg(x)

17
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4. APPROXIMATE GREATEST COMMON DIVISORS

If f(x) is exact and all computations are performed in a symbolic environment, the

GCD of f(x) and its derivative f (1)(x) can be computed by the Sylvester resultant

matrix S(f, f (1)).

The polynomial f(x) is rarely known exactly, and so the given data is

f̃(x) = f(x) + δf(x)

and f̃(x) and f̃ (1)(x) are (with probability almost 1) coprime.

• The polynomials f̃(x) and f̃ (1)(x) have an approximate greatest common divi-

sor (AGCD).

• Use the method of structured total least norm applied to S(f̃ , f̃ (1)) to compute

the smallest perturbation of S(f̃ , f̃ (1)) such that its perturbed form is singular,

which implies that the perturbed form f̃(x) of f(x) has a multiple root.

18
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4.1 The Sylvester resultant matrix

The product of two polynomials is equal to the convolution of their coefficients:





















r0

r1

...

rm+n−1

rm+n





















=



































p0

p1 p0

... p1
. . .

pm

...
. . . p0

pm

. . . p1

. . .
...

pm























































q0

q1

...

qn−1

qn





















r = Cn+1(p)q = p ⊗ q

r ∈ R
m+n+1, p ∈ R

m+1, q ∈ R
n+1 and Cn+1(p) ∈ R

(m+n+1)×(n+1)
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Let:

• dk(y) be a common divisor of degree k of the exact polynomials f(y) and

f (1)(y)

• The degree of the GCD of f(y) and f (1)(y) be d̂

• uk(y) and vk(y) be the quotient polynomials

f(y) = uk(y)dk(y) and f (1)(y) = vk(y)dk(y)

Thus

f(y)vk(y) − f (1)(y)uk(y) = 0 ⇔ Cm−k(f)vk − Cm−k+1(f
(1))uk = 0

where

Cm−k(f) ∈ R
(2m−k)×(m−k) and vk ∈ R

m−k

Cm−k+1(f
(1)) ∈ R

(2m−k)×(m−k+1) and uk ∈ R
m−k+1

20
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[

Cm−k(f) Cm−k+1(f
(1))

]





vk

−uk



 = Sk(f, f (1))





vk

−uk



 = 0

• Sk(f, f (1)) ∈ R
(2m−k)×(2m−2k+1) and it is rank deficient

• The nullspace vectors yield the coefficients of the quotient polynomials

• Since the degree of the GCD of f(y) and f (1)(y) is d̂, these polynomials pos-

sess common divisors of degrees 1, 2, . . . , d̂, but not a divisor of degree d̂ + 1:

rank Sk(f, f (1)) < 2m − 2k + 1, k = 1, . . . , d̂

rank Sk(f, f (1)) = 2m − 2k + 1, k = d̂ + 1, . . . , m − 1

Calculating the degree of the GCD reduces to estimating the rank of a matrix

21
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Example 4.1 Consider Sk(f, f (1)), for k = 1, 2, 3, for

f(x) = (x − 1)2(x − 2)(x − 3) = x4 − 7x3 + 17x2 − 17x + 6

f (1)(x) = 4x3 − 21x2 + 34x − 17

Hence S1(f, f (1)) = S(f, f (1)) is equal to































1 0 0 4 0 0 0

−7 1 0 −21 4 0 0

17 −7 1 34 −21 4 0

−17 17 −7 −17 34 −21 4

6 −17 17 0 −17 34 −21

0 6 −17 0 0 −17 34

0 0 6 0 0 0 −17































and this matrix has a unit loss of rank.

22



'

&

$

%

The subresultant matrix S2(f, f (1)) is

S2(f, f (1)) =



























1 0 4 0 0

−7 1 −21 4 0

17 −7 34 −21 4

−17 17 −17 34 −21

6 −17 0 −17 34

0 6 0 0 −17



























and this matrix has full column rank.
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The subresultant matrix S3(f, f (1)) is

S3(f, f (1)) =





















4 0 1

−21 4 −7

34 −21 17

−17 34 −17

0 −17 6





















and this matrix has full column rank.

It follows that the first rank deficient matrix in the sequence

S3(f, f (1)), S2(f, f (1)), S1(f, f (1))

is S1(f, f (1)), and thus the degree of the GCD of f(x) and f (1)(x) is one. �
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4.2 Pre-processing operations for the computation of an AGCD

The computation of an AGCD of f(x) and f (1)(x) requires that two pre-processing

operations be performed:

• f(x) and f (1)(x) must be normalised to balance the Sylvester matrix

• An AGCD of f(x) and f (1)(x) is equal to, up to a scalar multiplier, an AGCD of

f(x) and αf (1)(x), where α is an arbitrary non-zero constant.

GCD
(

f, f (1)
)

∼ GCD
(

f, αf (1)
)

, α 6= 0

– The resultant matrix S(f, αf (1)) should be used when it is desired to com-

pute an AGCD of f(x) and f (1)(x)

– How is the optimal value of α computed?

25
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1. Normalisation: Define f(x) and g(x) as

f(x) =

m
∑

i=0

āix
m−i, āi =

ai

(

∏m

j=0 |aj |
)

1
m+1

g(x) =

m−1
∑

i=0

b̄ix
m−1−i, b̄i =

(m − i)āi

(

∏m−1
j=0 |(m − j)āj |

)
1
m

Note: g(x) is proportional to f (1)(x)

2. The optimal value of α: Use linear programming to calculate α0, the optimal

value of α

26
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4.3 The coprime polynomials and the degree of an AGCD

Recall that

Sk(f, g)





vk

−uk



 = 0

• Sk(f, g) ∈ R
(2m−k)×(2m−2k+1) and it is rank deficient

• The nullspace vectors yield the coefficients of the quotient polynomials

• If the degree of an GCD of f(x) and g(x) is d, then

rank Sk(f, g) < 2m − 2k + 1, k = 1, . . . , d

rank Sk(f, g) = 2m − 2k + 1, k = d + 1, . . . , m − 1

Use the same criterion for the calculation of the degree of an AGCD
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• The degree d of an AGCD of f(x) and g(x) is equal to the largest value of k,

k = 1, . . . , m − 1, such that Sk(f, g) is numerically singular:

– The SVD of Sk(f, g) cannot be used because f(x) and g(x) are inexact

and therefore, with high probability, coprime

– The property

numerical rank Sk(f, α0g) = numerical rank Sk

(

g,
f

α0

)

enables a criterion for the calculation of d to be developed

• Sd(f, α0g) is numerically rank deficient by one and estimates of the coprime

polynomials can be calculated from its nullspace

Sd(f, α0g)





vd

−ud



 ≈ 0
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5. STRUCTURED TOTAL LEAST NORM

Recall that Sd(f, α0g) is numerically rank deficient by one and

Sd(f, α0g)





vd

−ud



 ≈ 0

If this equation is satisfied exactly, then

• The coprime polynomials are defined by the null space of Sd(f, α0g)

• f(y) and g(y) have a non-constant common divisor:

– f(y) has a multiple root

– g(y) has been moved to a pejorative manifold
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The calculation of d determines the column q of Sd(f, α0g) such that if

Sd(f, α0g) =
[

c1 c1 · · · cq−1 cq cq+1 · · · c2m−2k+1

]

then the approximate homogeneous equation

Sd(f, α0g)





vd

−ud



 ≈ 0

can be transformed into an approximate linear algebraic equation
[

c1 c1 · · · cq−1 cq+1 · · · c2m−2d+1

]

x ≈ cq

30
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or

Adx ≈ cq, Ad ∈ R
(2m−d)×(2m−2d), cq ∈ R

2m−d

x =





























x1

...

xq−1

xq+1

...

x2m−2d





























∈ R
2m−2d, xq = −1,

































x1

...

xq−1

−1

xq+1

...

x2m−2d

































=





vd

−ud
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Recall:

• The degree of an AGCD of the given inexact polynomials f(y) and g(y) is d

• The matrix Ad and vector cq are functions of the coefficients of f(y) and g(y).

•

Adx ≈ cq

is an approximate equation because its arguments are the coefficients of inexact

polynomials

Use structured total least norm to solve this approximate equation
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Given the inexact polynomials f(y) and g(y), which are assumed to be coprime,

calculate the smallest perturbations that must be added to their coefficients such

that the perturbed forms of f(y) and g(y) have a non-constant GCD.

Aim:

Compute the Sylvester matrix S(δf, α0δg), such that

‖δf‖
2

+ ‖δg‖
2

is minimised, where

Sd(f + δf, α0(g + δg)) = Sd(f, α0g) + Sd(δf, α0δg)

is rank deficient.
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The approximate under-determined equation

Adx ≈ cq

is corrected by considering the equation

(Ad(α0) + Ed(α0, z))x = cq(α0) + hq(α0, z)

which is non-linear in x and z.

• Ad and Ed have the same structure, and cd and hd have the same structure:

– Use the method of structured total least norm

• The initial vector of perturbations is z = 0

• Solve this non-linear under-determined equation subject to the constraint that

‖z‖
2

is minimised

• This leads to a least squares equality problem
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The Sylvester matrix Sd(f, α0g) is





































ā α0b̄

ā1
. . . α0b̄1

. . .

...
. . . ā

...
. . . α0b̄

ām−1
. . . ā1 α0b̄n−1

. . . α0b̄1

ām

. . .
... α0b̄n

. . .
...

. . . ām−1
. . . α0b̄n−1

ām α0b̄n
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If the perturbations of the coefficients of f(y) and α0g(y) are

zi, i = 0, . . . , m and α0zm+1+i, i = 0, . . . , n

respectively, then Ed(α0, z) is equal to





































z0 α0zm+1

z1
. . . α0zm+2

. . .

...
. . . z0

...
. . . α0zm+1

zm−1
. . . z1 α0zm+n

. . . α0zm+2

zm

. . .
... α0zm+n+1

. . .
...

. . . zm−1
. . . α0zm+n

zm α0zm+n+1
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• Perform these AGCD computations repeatedly in order to determine the multi-

plicities of the roots

– These calculations correspond to the identification of the pejorative manifold

on which the theoretically exact polynomial lies

The other stages in the algorithm:

• Use the method of least squares to perform the polynomial division

• Recall it is necessary to solve the polynomial equations

w1(x) = 0, w2(x) = 0, · · · , wrmax
(x) = 0

– Calculate the roots of the polynomial by solving these equations
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6. EXAMPLES

Example 6.1

componentwise noise amplitude

componentwise signal amplitude
= 10−6

exact root multiplicity computed root relative error

8.1031100000e+0 2 8.1031311463e+0 3.8437554630e-6

3.5078000000e+0 8 3.5077983383e+0 4.7372726251e-7

-6.3060000000e-1 8 -6.3060013449e-1 2.1327857935e-7

-5.8211000000e+0 9 -5.8210973315e+0 4.5841110328e-7

• The root multiplicities were calculated correctly
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Example 6.2

componentwise noise amplitude

componentwise signal amplitude
= 10−8

exact root multiplicity computed root relative error

-7.3132000000e+0 1 -7.3131318042e+0 9.3250329595e-6

9.0183000000e+0 2 9.0182738917e+0 2.8950322472e-6

4.4470000000e+0 3 4.4469987289e+0 2.8582679636e-7

6.6374000000e+0 4 6.6374090279e+0 1.3601587262e-6

-1.9984000000e+0 4 -1.9984000974e+0 4.8743537340e-8

-8.7907000000e+0 6 -8.7907151653e+0 1.7251509523e-6

• The root multiplicities were calculated correctly
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